2006 – Ross River Dam Spillway Gate Reliability and the Impact on the Design
Malcolm Barker, Barry Vivian and David S. Bowles
Ross River Dam is located approximately 15 km upstream of Townsville and provides a dual role of water supply and flood mitigation. The dam comprises a 39.6m long concrete overflow spillway flanked by a central core rockfill embankment of 300 m in length with a 7,620 m long left bank earth fill embankment, which has inadequate internal filter zones for piping protection. Since completion, design rainfall predictions for the area have doubled, technical data has changed and so, too, have dam safety standards. Dam safety evaluations during 2000-2002 showed that the dam required upgrading in order to bring it up to international standards. As an interim measure, the spillway was cut down by 3.6m.
Upgrade design works were then completed using risk-based design criteria to validate the design, and construction is in progress. The upgrade works comprise spillway anchoring, installation of three radial gates on the spillway, stilling basin modifications, embankment filter protection, and dam crest raising.
This paper presents the options considered, the method of reliability analysis, and how the results influenced the spillway system design and overall risk evaluation for the upgrade design.
$15.00
Related products
-
$15.00
Papers 2006
2006 – Recent Advances in the Seismic Analysis of Intake Towers
Learn moreJohn Bosler and Francisco Lopez
The ANCOLD “Guidelines for the Design of Dams for Earthquake” were published in August 1998. The guidelines contain a brief outline of the performance requirements and recommend, in general terms, a method of analysis for intake towers.
Over the last three decades there has been considerable research on the seismic performance of intake towers as they move into their inelastic range. In the years following the publication of the ANCOLD guidelines, some of the findings from this research have been incorporated into revised design procedures issued by the US Army Corps of Engineers. These procedures, if embraced by ANCOLD and the local dam engineering community, are likely to have a significant impact on how the structural adequacy of existing towers under seismic loading are assessed.
Rocking behaviour in which the tower becomes unstable as a transient condition has long been recognised as acceptable under certain conditions. Attempts to prevent tower rocking by measures such as retrofitting tensioned ground anchors may, in some situations, be of limited value in improving the seismic performance of a tower and could result in an increase in bending moments in the tower stem. Guidance is now available on the amount of rocking behaviour that is tolerable.
For seismic events greater than the Operating Basis Earthquake most towers will start to exhibit inelastic behaviour. Specific guidance is also now available on the length of time during an earthquake that bending moments in excess of the elastic capacity can be tolerated, the amount by which these moments can exceed the nominal bending moment capacity and the vertical extent of the tower stem that can be stressed beyond its elastic limit.
The paper discusses the different approaches taken by ANCOLD and the Corps of Engineers. Key differences in outcomes are highlighted using a worked example for a typical reinforced concrete tower and the ANCOLD approach is found to be generally, but not always, more conservative. The paper concludes with recommendations for dealing with these differences.
Learn more -
$15.00
Papers 2006
2006 – Meeting the Challenges of Tomorrow, Today – Human Resources – A Changing World
Learn moreKaren Soo Kee
Strategic resource management has never been more important than it is today with the aging of the “baby boomers” and their ongoing exodus from the workforce. The vacancies they leave in professions such as engineering are just beginning to be felt and will exponentially escalate over the next few years. Specialised professions such as dam engineering and related professions will be hit the hardest as the knowledge and skills learnt over decades are depleted.
The lack of skilled staff and in fact the lack of interest of young engineers in entering the dam industry is one of the critical challenges for today. How do we attract professional staff into the field of dam safety before the exodus creates a “black hole” that can never be filled? And how can we ensure the knowledge transfer from existing skilled staff to newer staff to retain expertise within the industry?
Another issue for resource management is that tomorrow’s workers, the “X &Y generations”, will be unlike the current and previous generations of workers. These workers will be less likely to have a mortgage, will have fewer children and be more interested in lifestyle, not career. They will be extremely confident, well-educated and very mobile. The future will be a sellers market. The challenge here will not only be to attract and recruit talented workers but also to retain them.
Learn more -
$15.00
Papers 2006
2006 – Justification for an Operating Restriction in Spain Incorporating ANCOLD Guidelines on Risk Assessment
Learn moreManuel G. de Membrillera, Ignacio Escuder, David Bowles, Eduardo Triana, Luis Altarejos
The work herein presented is an application of the risk assessment process to retroactively estimate the justification of an operating restriction implemented on a Spanish Dam. Since the risk approach is not yet an established practice in Spain, the main objective of this case study is to show, the utility that risk assessment can have as a decision support tool for decisions on dam safety risk reduction investments.
An operating restriction has been imposed at this dam since its first impoundment. All studies, analysis and documents related to the safety of the dam and reservoir have been completed, as required by the Technical Regulation on Dam and Reservoir Safety (Spanish legislation, 1996). In addition, the structural corrective actions recommended in these evaluations are being implemented, so it is expected that the operating restriction can be removed in the near future.
In this context, the problem that has been formulated and solved comprises an evaluation, after more than 30 years since construction, of the operating restriction justification in terms of risk mitigation. In order to achieve the objective of the work, ANCOLD guidelines on Risk Assessment (2003) have been followed in addition to tolerable risk guidelines from several other countries and organizations.
Learn more -
$15.00
Papers 2006
2006 – Overview of Geodetic Deformation Measurements of Dams
Learn moreDr. J. M. Rüeger
After a brief review of the origin and early days of the technique, the present role of geodetic deformation measurements is discussed. The design of geodetic measurement schemes is then considered, followed by a review of geodetic measurement, analysis and reporting techniques. An overview of the important discussions, that need to take place between engineers and surveyors in the design phase, follows. This covers the definition of the engineering needs and the resolution of surveying issues.
Learn more -
$15.00
Papers 2006
2006 – Hydro Tasmania Survey & Instrumentation – Guidelines and Decision Frameworks
Learn moreFenderson, Swindon
As one of Australia’s largest dam owners, Hydro Tasmania maintains a comprehensive Dam Safety Program. The Program makes use of industry Guidelines in combination with complementary processes to form a decision framework. This framework drives dam improvement initiatives, one of which is the development and operation of survey and instrumentation programs. It is Hydro Tasmania’s belief that the ANCOLD Guidelines on Dam Safety Management currently provide adequate descriptive guidance with regards to survey and instrumentation and it is questionable if more prescriptive Guidelines are prudent or required. Hydro Tasmania believes that a Guideline presenting a decision framework from which targeted Survey, instrumentation and inspection programs and other initiatives can evolve would be a welcomed document to the Australian dams community.
Learn more