2006 – Failure Modes Analysis as Applied at Rocklands Dam
Marius Jonker, Malcolm Barker and Gary Harper
This paper provides a framework for conducting an effective Failure Modes Analysis. It explains the fundamental principals and methods of Failure Modes Analysis. The current international state of practice on Failure Modes Analysis is discussed, and the objectives, benefits and limitations of Failure Modes Analysis assessed. Guidelines are given on how to apply the outcome of Failure Modes Analysis in dam safety management and surveillance.The effective application of Failure Modes Analysis is illustrated in a case study where the process was applied in the safety review and risk assessment of Rocklands Dam for Grampians Wimmera Mallee RegionWater Authority in Victoria.
$15.00
Now showing 1-12 of 59 2970:
Related products
-
$15.00
2006 Papers
2006 – Developing Techniques for New Dam Design and Construction Management – Recent New Zealand Experience
Learn moreR. Dawson, J. Grimston, R. Cole, D. Bouma
The authors have been involved in the design and construction of several embankment dams in New Zealand over the past decade, and have considerable corporate knowledge from dams designed by the company in its 47-year history. This paper examines four dams which are relatively small to medium, ranging in height from 10 to 19 m with moderate storage volumes. Three of the dams service landfills and the fourth a wood processing mill. Such dams may provide the designer with considerable challenges due to their relatively low capital cost resulting in limited investment in geotechnical investigation at the front end of the project, with varying levels of change often required during construction due to unforeseen conditions as a result of the limited investigations.
The general arrangement and conceptual design principles for each of the dams is described followed by the field investigation and laboratory testing undertaken for each dam, together with the interpreted ground conditions.
The experiences from construction have helped to develop techniques for a balance between preliminary design, investigation, and evolution of the design and specification during construction. It is imperative to develop a sufficiently detailed preliminary design, on the basis of readily available information such as visual and geological assessment, to allow the investigation to be thoughtfully designed to allow the major assumptions to be verified. This needs to be followed by a skilfully executed geotechnical investigation with the designer advising on findings and changing direction as necessary through the investigation. An investigation trench along the full alignment of the cutoff trench (if envisaged in the design) is warranted. Earthworks specifications should be evolved early in the construction phase through compaction trials using specific plant for the site, and backed up by insitu and laboratory testing.
Learn more -
$15.00
2006 Papers
2006 – Achieving Benefits From Instrumentation And Survey Measurements Of Dam Behaviour
Learn moreJohn D Smart
The paper presents the recent trends in the use of instrumentation and survey measurements at Bureau of Reclamation (Reclamation) dams. The underlying philosophy that has influenced those trends is presented and discussed. Based on experience at Reclamation, several factors that are considered key to the effective use of instrumentation and surveys are discussed. Several conclusions are offered.,
Learn more -
$15.00
2006 Papers
2006 – Settlement Behaviour of A Major Dam
Learn morePeter J Burgess, Delfa Sarabia, John Small, H. G. Poulos and Jayanta Sinha
The assessment of settlement behaviour of clay core rock fill dams has always been a challenge for dam designers and geotechnical engineers. The method of construction and the material properties of the clay and rock fill materials used in the dam construction have a significant influence on the inter-zonal interaction and the load transfer that occurs within the dam. At times this load transfer can lead to excessive differential and total settlements. The paper presents a case study of a major dam that experienced large settlements during and after construction. An elaborate analysis has been carried out by modelling the sequences of construction by using a finite element program (PLAXIS).
The paper describes the influence of the degree of compaction and moisture control on non-linear deformation characteristics of clay core. High vertical strains in the wet placed region of the core and low strains in the dry placed regions were analysed for possible shear development between the core and shell. The rock fill for the dam embankment consists of quartzite, metasiltstone and phyllite material. These materials have apparently undergone deformation with increasing height of the dam due to softening and crushing as saturation of the embankment took place. The effect of soil consolidation and strength gains have been considered in the analysis and are discussed. The settlement behaviour of the dam including these effects has been analysed, and compared with the historical post-construction settlements.
This paper is intended to provide valuable information for dam engineers handling clay core rock fill dams – especially where there is excessive settlement of the core.
Learn more -
$15.00
2006 Papers
2006 – Principles and Requirements of a Dam with Asphalitic Core – Kelag’s Experience Spanning a Period of More Than 15 Years Operation
Learn moreFritz Neuschitzer
The Koralpe hydropower scheme is a major development on the Feistritzbach tributary of the River Drau to utilize water in a 50 MW powerhouse located in the south-eastern Carinthia, Europe. The Soboth reservoir is situated 735 m higher in a narrow valley and is created by the 85 m high Feistritzbach dam which was constructed near the border of Austria and Slovenia between 1988 and 1990. This rockfill dam is the latest addition to KELAG’s more than 15 structures and is sealed by an asphaltic core. The excellent deformability and impermeability of the asphaltic core is able to follow the deformation of the compacted rock-fill material best during construction, initial filling and operation period without any seepage. The asphaltic core was placed in three 20 cm layers per day by a specially developed placing unit from a contractor. The upstream and downstream filter zone was placed at the same time with the same machine and compacted carefully by vibrating rollers. The dam is curved in plan with a radius of 650 m and contains about 1.6 million m³ rock fill material. The surface of the downstream side was built exceeding the environmental standards of the time.The most important indicator of the normal function of a dam is the behaviour of seepage. A monitoring system of seepage, piezometers, earth pressure cells and deformation has been installed. The seepage water is monitored online at seven points of the dam base and at the access tunnel to the bottom outlet valve. Geodetic measurements on and inside the dam are done once a year. Several additional pieces of surveillance equipment were installed to observe the behaviour of the asphaltic core. The paper concentrates on the design, construction and performance of the dam with the asphaltic core.
Learn more -
$15.00
2006 Papers
2006 – Design and Construction of the Ridges Basin Dam
Learn moreJohn Cyganiewicz
Ridges Basin Dam is part of the Animas-La Plata Project. When topped out in approximately 2008, it will be Reclamation’s newest dam. It will have a structural height of 273 feet and impound 120,000 acre-feet of water. This paper will discuss the design of the embankment and will detail the site geology, the general design considerations for layout and zoning, and other technical considerations. The construction, which began in 2004, is ongoing. This paper will also discuss foundation treatment and cleanup, the placement of the embankment material, grouting, and the unusual material processing for filters and drains, along with general construction details. Also included in the paper are the challenging arrangements for contracting by the American Indian Self Determination and Education Assistance Law, an overview of the dam safety risk analyses conducted on the yet-to-be-constructed embankment, and modern construction techniques being utilized to build the embankment.
Learn more