2006 – Effect of Geology on Dam Construction Projects in Iran
A. Uromeihy, P.G. Ranjith
In response to increasing potable water need and in order to control and collect precipitations, many dams have been constructed and many more are under construction in Iran. Due to the complex geology of the country, many of the dam sites face serious geological problems both during construction and in operation phases. The most predominant types of problems are water leakage and sediment deposition in the reservoirs. In order to define and classify the type of problem with regards to geological condition, the country is divided into eight zonesin whicheach zone demonstrates similar problem on the dam site location. It is found that the water leakage is related directly to either the presence of soluble carbonate rocks in the abutment or the presence of thick permeable material in the foundation. It is also shown that the sediment deposition in the reservoir is related to many factors but the geology of the watershed area has a major effect. Therefore it can be concluded that the geology has a great role in the construction of dams.
$15.00
Now showing 1-12 of 59 2970:
Related products
-
$15.00
2006 Papers
2006 – Reservoir Safety in England and Wales – A Time of Change
Learn moreIan Hope
The Water Act 2003 established a new role for the Environment Agency, that of the Enforcement Authority for the Reservoirs Act 1975 in England and Wales. The transfer of this regulatory role from 136 Local Authorities has had a significant impact on the regulated community. Further change is heralded with the forthcoming introduction of Reservoir Flood Plans, Post-Incident Reporting and a review of current regulations. The improvements sought in reservoir safety may be at risk due to a growing skills shortage and increasing financial constraints imposed by owners.
This paper highlights the issues impacting on the reservoir industry in England and Wales and in recognising developments made by ANCOLD members the author seeks to understand how they are being responded to in Australia.
Learn more -
$15.00
2006 Papers
2006 – Pykes Creek Dam: A Staged Risk Based Approach To Remedial Works
Learn moreJoseph Matthews, Dr Mark Foster, Michael Phillips
Pykes Creek Dam is a 39m high earthfill dam with a central clay puddle core, first completed in 1911 and raised in 1930. A detailed risk assessment of the dam indicated that the risk did not satisfy ANCOLD societal risk criteria and that remedial works were necessary to address piping deficiencies and inadequate flood capacity. The risk assessment identified that piping at the embankment/spillway interface accounted for over 80% of the total risk. Therefore, interim risk reduction works were implemented in 2005 to address this risk issue while investigations and design studies were progressed for the second stage of works. Following the Stage 1 works, Pykes Creek Dam remains the highest risk in Southern Rural Water’s portfolio of dams and Stage 2 works are planned to commence in 2007 to reduce piping risks and increase flood capacity. The aim of the Stage 2 works is to reduce the risk below the Limit of Tolerability for Existing Dams (ANCOLD 2003) and to increase the flood capacity to a level more appropriate for an Extreme consequence category dam based on ALARP principles. The upgrade will stop short of meeting the PMF as there are other dams in Southern Rural Water’s portfolio requiring attention before an upgrade to this standard would be considered. The design of the works was complicated by the fact that the dam is bisected by a major freeway and has a complex spillway layout. This paper discusses the decision-making process and the methods used to analyse the dam from the initial risk assessment studies through to the design of the remedial works.
Learn more -
$15.00
2006 Papers
2006 – Emergency Action Planning for SunWater Dams
Learn moreA. Khan
SunWater manages its portfolio of 29 major dams through 6 business centres each responsible for the Dam Safety Program for the dams under its management control.
The effectiveness of responses during an emergency depends on the amount of planning and training performed. Management must show its support for dam safety programs and the importance of emergency planning.
If management is not interested in community protection and in minimising property loss, little can be done to promote dam safety. It is therefore management’s responsibility to see that a program is instituted and that it is frequently reviewed and updated.
The input and support of all communities must be obtained to ensure an effective program. The emergency response plan should be developed locally and should be comprehensive enough to deal with all types of emergencies specific to that site.
SunWater is a responsible dam owner and has recently upgraded all its emergency action plans in consultation with emergency services of Queensland. This paper details the basic steps to handle emergencies of water infrastructure. These emergencies include inflow floods, rapid drawdown, earthquake, sunny day failure, changes in reservoir water quality and terrorist attacks including hoax.
This paper is intended to assist small dam owners that do not have dam safety programs in place. It is not intended as an all inclusive safety program but rather a provision of guidelines for planning for emergencies.
Learn more -
$15.00
2006 Papers
2006 – Dam Safety Management in Austria
Learn morePius Obernhuber
In Austria, special procedures for ensuring dam safety apply to dams higher than 15 m or reservoirs with a capacity of more than 500,000 m³. There are at present about 90 dams which belong to this category. The largest one is the 200 m high Kölnbrein arch dam.
In general, it is the task of the dam owner to provide for the safety of a dam. For that, he has to appoint qualified engineers, the “Dam Safety Engineers”, which are in charge of dam surveillance and maintenance. The Water Authority verifies that the owner makes the necessary provisions for dam safety. Water Authorities are the Provincial Governor and the Federal Minister of Agriculture and Forestry. The Water Authorities are supported by a governmental advisory board, the “Austrian Commission on Dams”.
Projects for new dams or for reconstruction of existing dams are examined by the Austrian Commission on Dams. Approval by the Water Authority is based on the findings of this commission. A group of a few experts of the commission accompanies the project during construction, first impounding and the final acceptance procedure. In normal operation, dam attendants carry out visual inspections and measurements. The most important instruments are measured automatically and the data are transmitted to a permanently manned control centre. The Dam Safety Engineer has to inspect the dam at least once a year. His annual report to the Water Authorities must contain an assessment of the safety of the dam. The Federal Dam Supervisory Department of the ministry checks the annual reports and carries out an in-depth inspection of the dam at least every five years.
In the case of extraordinary events, the Dam Safety Engineer has to assess the situation and he has to set appropriate measures. An Emergency Action Plan is available for all dams of the said category.
Learn more -
$15.00
2006 Papers
2006 – Principles and Requirements of a Dam with Asphalitic Core – Kelag’s Experience Spanning a Period of More Than 15 Years Operation
Learn moreFritz Neuschitzer
The Koralpe hydropower scheme is a major development on the Feistritzbach tributary of the River Drau to utilize water in a 50 MW powerhouse located in the south-eastern Carinthia, Europe. The Soboth reservoir is situated 735 m higher in a narrow valley and is created by the 85 m high Feistritzbach dam which was constructed near the border of Austria and Slovenia between 1988 and 1990. This rockfill dam is the latest addition to KELAG’s more than 15 structures and is sealed by an asphaltic core. The excellent deformability and impermeability of the asphaltic core is able to follow the deformation of the compacted rock-fill material best during construction, initial filling and operation period without any seepage. The asphaltic core was placed in three 20 cm layers per day by a specially developed placing unit from a contractor. The upstream and downstream filter zone was placed at the same time with the same machine and compacted carefully by vibrating rollers. The dam is curved in plan with a radius of 650 m and contains about 1.6 million m³ rock fill material. The surface of the downstream side was built exceeding the environmental standards of the time.The most important indicator of the normal function of a dam is the behaviour of seepage. A monitoring system of seepage, piezometers, earth pressure cells and deformation has been installed. The seepage water is monitored online at seven points of the dam base and at the access tunnel to the bottom outlet valve. Geodetic measurements on and inside the dam are done once a year. Several additional pieces of surveillance equipment were installed to observe the behaviour of the asphaltic core. The paper concentrates on the design, construction and performance of the dam with the asphaltic core.
Learn more