2006 – Dam Monitoring at Verbund – Austrian Hydro Power
Pius Obernhuber
Verbund – Austrian Hydro Power (AHP) is the owner and operator of 27 large dams. The highest dam is the 200 m high Koelnbrein arch dam and the highest embankment dam is the 83 m high Durlass-boden dam. Instrumentation of the dams of AHP comprises almost all kinds of instruments employed in dam monitoring. Manual measurements are carried out with the help of portable terminals. Auto-matic monitoring with an early warning system is implemented at all dams. Besides a description of the monitoring system and some “interesting” measurement results the article also deals with organisational aspects of dam surveillance.
The case study of Koelnbrein arch dam is appended to the article. It contains a brief description of the original dam and the encountered problems as well as of the main elements of the remedial works. Dam surveillance and the performance up to now are also dealt with.
$15.00
Now showing 1-12 of 59 2970:
Related products
-
$15.00
2006 Papers
2006 – Water Corporation Dam Instrumentation and Monitoring Practice
Learn moreMichael Somerford, Alex Gower
The Water Corporation is the principal dam owner in Western Australian with a portfolio of 95 dams. In the absence of dam safety legislation in Western Australia the Corporation has adopted a policy of self regulation. This paper presents how the Corporation’s dam safety policy has been implemented with respect to dam instrumentation and monitoring. It includes a summary of the type of instruments used and experiences with automated data collection systems. The paper concludes that the Corporation does not see a need for a dam instrumentation guideline, however a document summarising current Australian practices and experiences would be of value.
Learn more -
$15.00
2006 Papers
2006 – Large Dam Instrumentation and Deformation Surveys in South Australia
Learn moreLawrie Schmitt and Angus Paton
As the owner of most of the large dams in South Australia the South Australian Water Corporation (SA Water) is responsible for the safety of these structures and their designed function of water supply and flood control. In order to meet these responsibilities SA Water monitors the performance of the structures using engineering deformation surveys and various forms of instrumentation. This paper outlines the instrumentation and survey monitoring undertaken at SA Water large dams and discusses the issues arising.
Learn more -
$15.00
2006 Papers
2006 – Which Belts And Braces Do We Really Need? – Application of a Functional Safety Methodology to a Dam Safety Assurance Programme
Learn moreC Lake and J Walker
Meridian Energy is the owner and operator of a chain of hydro dams on the Waitaki River in the South Island of NZ. It operates a Dam Safety Assurance Programme which reflects current best practice; consequently it has focused primarily on managing civil dam assets. Advances in plant control technology have allowed de-manning of our power stations, dams and canals through centralised control. The safety of our hydraulic structures is increasingly reliant on the performance of Dam Safety Critical Plant (DSCP) – those items of plant (eg water level monitoring, gates, their power and control systems, and sump pumps) which are required to operate automatically, or under operator control, to assure safety of the hydraulic structures in all reasonably foreseeable circumstances.
Recent dam safety reviews have highlighted that the specification and testing of our DSCP is based on the application of ‘rules of thumb’ which have been established through engineering practice (eg. “monthly tests”, “third level of protection”, “backup power sources”, “triple voted floats”). The adequacy of these engineering practices is difficult to defend as they are not based on published criteria. The realisation that such rules may not be relevant to the increased demand on, and complexity of, DSCP led us to ask “Which belts and braces do we really need?”
The current NZSOLD (2000) and ANCOLD (2003) Dam Safety guidelines give little guidance regarding specific criteria for the design and operation of DSCP. Meridian has identified the use of Functional Safety standards (from the Process industry, defined in IEC 61511) as a tool which can be applied to the dams industry to review the risks to the hydraulic structures, the demands on the DSCP, and utilise corporate “tolerable risk” definitions to establish the reliability requirements (Safety Integrity Levels) of each protection, and determine lifecycle criteria for the design, operation, testing, maintenance, and review of those protections.
This paper outlines the background to identifying Functional Safety as a suitable tool for this purpose, and the practical application of Functional Safety Analysis to Meridian’s DSCP.
Learn more -
$15.00
2006 Papers
2006 – From Portfolio Risk Assessment to Portfolio Risk Management
Learn moreDavid S. Bowles
Portfolio Risk Management is a risk-informed approach for improved management of dam safety for a portfolio of dams in the context of the owner’s business. It can be used to identify ways to strengthen technical and organisational aspects of a dam safety program, and to provide valuable inputs to various business processes. Portfolio Risk Assessment is a decision-support tool, which is incorporated in Portfolio Risk Management. It can combine engineering standards and risk assessment approaches to provide a systematic means for identifying, estimating and evaluating dam safety risks, including comparisons with other industries. It should be periodically updated to provide a basis for managing prioritised queues of investigations and risk-reduction measures to achieve more rapid and cost-effective reduction of both knowledge uncertainty and risk.
Portfolio Risk Assessment is a standard of practice in Australia and is being applied by the US Army Corps of Engineers and others. When properly conducted and used within its limitations, the Portfolio Risk Assessment process is generally considered to be robust, adaptive, defensible for corporate governance, and to justify its cost through such benefits as increased dam safety funding, identification of failure modes that were not previously recognised, identification of opportunities for improved risk management, and more rapid “knowledge uncertainty” and risk reduction.
Learn more -
$15.00
2006 Papers
2006 – Achieving Benefits From Instrumentation And Survey Measurements Of Dam Behaviour
Learn moreJohn D Smart
The paper presents the recent trends in the use of instrumentation and survey measurements at Bureau of Reclamation (Reclamation) dams. The underlying philosophy that has influenced those trends is presented and discussed. Based on experience at Reclamation, several factors that are considered key to the effective use of instrumentation and surveys are discussed. Several conclusions are offered.,
Learn more