2006 – Dam Instrumentation or Damn Instrumentation – A South African Perspective
Chris Oosthuizen
A brief overview of dam surveillance is given from a South African perspective and more specifically the perspective of the Department of Water Affairs and Forestry (DWAF). DWAF’s Ten Commandments for the design of dam monitoring systems serve as introduction and this is followed by a summary of the design steps. The various parameters that can be measured and the South African preferences are discussed briefly followed by a synoptic description of crack and joint monitoring in South Africa. This provides the background for DWAF’s recent developments in 3-D Crack-Tilt gauges. Some of DWAF’s achievements as well as some of the blunders made by the author during the past 30 years are illustrated by means of a few case histories.
$15.00
Related products
-
$15.00
Papers 2006
2006 – Failure Modes Analysis as Applied at Rocklands Dam
Learn moreMarius Jonker, Malcolm Barker and Gary Harper
This paper provides a framework for conducting an effective Failure Modes Analysis. It explains the fundamental principals and methods of Failure Modes Analysis. The current international state of practice on Failure Modes Analysis is discussed, and the objectives, benefits and limitations of Failure Modes Analysis assessed. Guidelines are given on how to apply the outcome of Failure Modes Analysis in dam safety management and surveillance.The effective application of Failure Modes Analysis is illustrated in a case study where the process was applied in the safety review and risk assessment of Rocklands Dam for Grampians Wimmera Mallee RegionWater Authority in Victoria.
Learn more -
$15.00
Papers 2006
2006 – Corporate Governance for Dam Safety
Learn moreS. Frazer
Ensuring compliance with the Regulator’s requirements is a cornerstone consideration for any water corporation in planning its risk minimisation strategies against dam failure. With the increased focus on due diligence and corporate governance however, there are emerging themes that are of equal importance for a water corporation in planning protections against its core risks to dam safety.
These considerations include:
- documenting and implementing plans and strategies to ensure corporate compliance with the Regulator’s requirements and updating these in line with legislative and policy changes;
- Documenting and implementing the corporation’s defences to the common law duty of care for public liability, including keeping up to date with the latest case law development locally and internationally in interpreting implications in respect of damage to property and injury and loss of life in relation to dam failure.
- Adopting behaviours and practices that bear out a compliance culture – is the current dam safety assessment and training “best practice” and is this enough to defend a claim? What is reasonable in economic and practical terms to ensure defensibility?
- ensuring the Board, Executive and other Officers are informed of operational decisions and incidents and their advice is implemented;
- arranging and maintaining appropriate insurances if available for public liability and property damage, as well as protections for directors and officers, both past and current. •
- Developing and implementing a policy for disclosure, document management and retention that will support investigation for legal proceedings purposes; including providing privilege for relevant legal advices.
-
$15.00
Papers 2006
2006 – Accessing Deep Storage at Warragamba Dam
Learn moreB Simmons, N Mudge
In 2004 the NSW Government released its Metropolitan Water Plan (MWP). This plan detailed the government’s initiatives to secure Sydney’s water needs during the current drought and into the future. The MWP outlined a range of both demand and supply side measures. These included modification to Warragamba and Nepean dams so that the water at the bottom of the dams that is currently unavailable for water supply can be accessed.
Accessing this deep water will increase the available water supply by an additional six months in the immediate drought and will provide, on average, an additional 40GL/annum to our long term available water supply.
The Warragamba Dam Deep Water Access Project involves accessing and transferring water from deep in Warragamba Dam to the existing water supply system.
Phase One of the project saw an abandoned underground pumping station 1.5km downstream of the dam wall, being enlarged and upgraded to pump water from the low level pipeline into the existing water transfer pipelines.
Phase Two of the project involved making a penetration low on the dam wall, some ninety metres below full storage level to access the deep water. This enabled the water to flow into the new pumping station, through an existing underground pipeline.
This project and in particular Phase Two was extremely unique due to the saturation diving systems and specialist tooling systems needed to create the penetration in the dam wall. The project provides a reference point for the water industry for future similar works.
This paper describes the project that was initiated at Warragamba Dam to access the deep water and is focused on the extremely difficult and unique works associated with creating the low level penetration in the dam wall.
Learn more -
$15.00
Papers 2006
2006 – Dam Safety Management in Austria
Learn morePius Obernhuber
In Austria, special procedures for ensuring dam safety apply to dams higher than 15 m or reservoirs with a capacity of more than 500,000 m³. There are at present about 90 dams which belong to this category. The largest one is the 200 m high Kölnbrein arch dam.
In general, it is the task of the dam owner to provide for the safety of a dam. For that, he has to appoint qualified engineers, the “Dam Safety Engineers”, which are in charge of dam surveillance and maintenance. The Water Authority verifies that the owner makes the necessary provisions for dam safety. Water Authorities are the Provincial Governor and the Federal Minister of Agriculture and Forestry. The Water Authorities are supported by a governmental advisory board, the “Austrian Commission on Dams”.
Projects for new dams or for reconstruction of existing dams are examined by the Austrian Commission on Dams. Approval by the Water Authority is based on the findings of this commission. A group of a few experts of the commission accompanies the project during construction, first impounding and the final acceptance procedure. In normal operation, dam attendants carry out visual inspections and measurements. The most important instruments are measured automatically and the data are transmitted to a permanently manned control centre. The Dam Safety Engineer has to inspect the dam at least once a year. His annual report to the Water Authorities must contain an assessment of the safety of the dam. The Federal Dam Supervisory Department of the ministry checks the annual reports and carries out an in-depth inspection of the dam at least every five years.
In the case of extraordinary events, the Dam Safety Engineer has to assess the situation and he has to set appropriate measures. An Emergency Action Plan is available for all dams of the said category.
Learn more -
$15.00
Papers 2006
2006 – Ross River Dam Spillway Gate Reliability and the Impact on the Design
Learn moreMalcolm Barker, Barry Vivian and David S. Bowles
Ross River Dam is located approximately 15 km upstream of Townsville and provides a dual role of water supply and flood mitigation. The dam comprises a 39.6m long concrete overflow spillway flanked by a central core rockfill embankment of 300 m in length with a 7,620 m long left bank earth fill embankment, which has inadequate internal filter zones for piping protection. Since completion, design rainfall predictions for the area have doubled, technical data has changed and so, too, have dam safety standards. Dam safety evaluations during 2000-2002 showed that the dam required upgrading in order to bring it up to international standards. As an interim measure, the spillway was cut down by 3.6m.
Upgrade design works were then completed using risk-based design criteria to validate the design, and construction is in progress. The upgrade works comprise spillway anchoring, installation of three radial gates on the spillway, stilling basin modifications, embankment filter protection, and dam crest raising.
This paper presents the options considered, the method of reliability analysis, and how the results influenced the spillway system design and overall risk evaluation for the upgrade design.
Learn more