2006 – Contemporary Issues Concerning the Instrumentation/Survey of Dams from the Legal Perspective
Dermot Armstrong
This paper reviews the general principles of duty of care which assist in the understanding of responsibilities that may exist for surveillance of dam safety, including the inter-play of the common law and statutory law. Only when there is a foundation in the general principles can obligations upon dam owners/operators with respect to surveillance and instrumentation be interpreted. Some legal issues around the development and use of industry guidelines are also explored.
$15.00
Related products
-
$15.00
Papers 2006
2006 – Putting Better Practice into PPRR
Learn moreJ. Titterton
For many years most emergency management agencies in Australia have used a framework called Prevention, Preparedness, Response and Recovery (PPRR). This approach has worked very well in the past and has been incorporated into the more recent framework of Emergency Risk Management.
While Emergency Management Agencies use practice sessions in the form of Desktop/Tabletop Exercises and Field Exercises as part of Preparedness (the 2nd P in PPRR) these activities can suffer from a lack of engagement with the community.
State Water Corporation, a dam owner in NSW, has installed warning systems to trigger plans written by the SES to warn affected residents of possible dam failure. Although the systems are maintained and tested regularly in a technical sense, the next logical step is to encourage the affected communities to understand their role in the event of evacuation.
A joint exercise involving the NSW State Emergency Service (SES), State Water Corporation and the community, was conducted in a town in the Namoi valley in 2005 and has provided an opportunity to explore this concept. State Water Corporation is now confident that not only will the technical side of the warning system work but that residents should be more aware of their role and that of the SES and State Water Corporation.
Other benefits from the exercise are: the opportunity for improving general flood awareness in the community; the SES identifying community representatives; fine tuning procedures between and within the SES and State Water Corporation; allaying fears within the community about what is required of them in a dam failure; and demonstrating the dam owner’s duty of care to affected residents.
Learn more -
$15.00
Papers 2006
2006 – Accessing Deep Storage at Warragamba Dam
Learn moreB Simmons, N Mudge
In 2004 the NSW Government released its Metropolitan Water Plan (MWP). This plan detailed the government’s initiatives to secure Sydney’s water needs during the current drought and into the future. The MWP outlined a range of both demand and supply side measures. These included modification to Warragamba and Nepean dams so that the water at the bottom of the dams that is currently unavailable for water supply can be accessed.
Accessing this deep water will increase the available water supply by an additional six months in the immediate drought and will provide, on average, an additional 40GL/annum to our long term available water supply.
The Warragamba Dam Deep Water Access Project involves accessing and transferring water from deep in Warragamba Dam to the existing water supply system.
Phase One of the project saw an abandoned underground pumping station 1.5km downstream of the dam wall, being enlarged and upgraded to pump water from the low level pipeline into the existing water transfer pipelines.
Phase Two of the project involved making a penetration low on the dam wall, some ninety metres below full storage level to access the deep water. This enabled the water to flow into the new pumping station, through an existing underground pipeline.
This project and in particular Phase Two was extremely unique due to the saturation diving systems and specialist tooling systems needed to create the penetration in the dam wall. The project provides a reference point for the water industry for future similar works.
This paper describes the project that was initiated at Warragamba Dam to access the deep water and is focused on the extremely difficult and unique works associated with creating the low level penetration in the dam wall.
Learn more -
$15.00
Papers 2006
2006 – Hydro Tasmania Survey & Instrumentation – Guidelines and Decision Frameworks
Learn moreFenderson, Swindon
As one of Australia’s largest dam owners, Hydro Tasmania maintains a comprehensive Dam Safety Program. The Program makes use of industry Guidelines in combination with complementary processes to form a decision framework. This framework drives dam improvement initiatives, one of which is the development and operation of survey and instrumentation programs. It is Hydro Tasmania’s belief that the ANCOLD Guidelines on Dam Safety Management currently provide adequate descriptive guidance with regards to survey and instrumentation and it is questionable if more prescriptive Guidelines are prudent or required. Hydro Tasmania believes that a Guideline presenting a decision framework from which targeted Survey, instrumentation and inspection programs and other initiatives can evolve would be a welcomed document to the Australian dams community.
Learn more -
$15.00
Papers 2006
2006 – Overview of Geodetic Deformation Measurements of Dams
Learn moreDr. J. M. Rüeger
After a brief review of the origin and early days of the technique, the present role of geodetic deformation measurements is discussed. The design of geodetic measurement schemes is then considered, followed by a review of geodetic measurement, analysis and reporting techniques. An overview of the important discussions, that need to take place between engineers and surveyors in the design phase, follows. This covers the definition of the engineering needs and the resolution of surveying issues.
Learn more -
$15.00
Papers 2006
2006 – PMP ESTIMATES – ARE WE KIDDING OURSELVES?
Learn moreJanice H. Green and Jeanette Meighen
The Probable Maximum Precipitation (PMP) is defined as ‘the theoretical greatest depth of
precipitation that is physically possible over a particular catchment’. The PMP depths provided by
the Bureau of Meteorology are described as ‘operational estimates of the PMP’ as they represent the best estimate of the PMP depth that can be made, based on the relatively small number of large events that have been observed and our limited knowledge of the causative mechanisms of extreme rainfalls.Nevertheless, the magnitudes of the PMP depths provided by the Bureau are often met with scepticism concerning their accuracy when compared to large rainfall events which have been observed within catchments and which are, typically, only 20% to 25% of the PMP estimates. The recent increases in the PMP depths, resulting from the revision of the Generalised Tropical Storm Method (GTSMR), have served only to entrench this cynicism.
However, analyses of the magnitudes of the storms in the databases adopted for deriving PMP depths show that these observed storms constituted up to 76% of the corresponding GTSMR PMP depths and up to 80% of the Generalised Southeast Australia Method PMPs for the storm location. Further, comparisons of the PMP depths to large storms observed in similar climatic regions around the world indicate that the PMPs are not outliers.
The results of these analyses are presented for a range of catchment locations and sizes and storm durations and demonstrate that the PMP estimates provided by the Bureau of Meteorology are reasonable and are not unduly large.
Learn more