2003 – Stapylton Reclaimed Water Storage Dam Environmental Constraints and Effects on the Dam and Diffuser Design
M. Barker, T. Burt, K. McCallum-Gaul, Dr M. Barry
The disused Stapylton quarry is located in the suburbs of the Queensland Gold Coast. Gold Coast City Council, as part of the Northern Wastewater Strategy, has included the use of the quarry for storage and re-distribution of reclaimed water from the Beenleigh Water Reclamation Facility (WRF) to the downstream cane farmlands. A comprehensive EIS has been produced, which has strict water quality requirements for the quarry environs as well as the reservoir and outflow. This paper presents the background to the Northern Wastewater Strategy, the requirements for the Stapylton reservoir and the analysis performed for the detailed design of the embankment dam and the inlet bubble plume destratification system. The modelling of the destratification system was undertaken using the programme DYnamic REservoir Simulation Model (DYRESM) coupled with Computational Aquatic Ecosystems DYnamics Model (CAEDYM). The outcomes and implications of the modelling for the design and system operation including environmental monitoring are discussed.
$15.00
Now showing 1-12 of 72 2967:
Related products
-
$15.00
2003 Papers
2003 – BELLFIELD FLOOD SECURITY UPGRADE How we did it our way with minimal resources
Learn moreBellfield dam is a 78,500 ML drought reserve storage for the Wimmera-Mallee Stock and Domestic System. The 800m long by 57m high zoned earth and rockfill dam is located on Fyans Creek upstream of the Grampians tourist town of Halls Gap in north western Victoria. The dam was built in the period 1963-67. Later in 2002-03 as part of a flood security upgrading (FSU) program, had its rock chute spillway deepened by 3.4m and its embankment crest raised by 1.9m to withstand a PMF.
To manage the FSU’s likely construction constraints and risks, Wimmera Mallee Water’s Headworks Group successfully undertook the upgrading by a mix of schedule of rates contracts and direct management.
This paper complements a companion paper by WMW’s design consultants, URS and describes why and how direct management was used, plus unconventional aspects of spillway deepening and the raising of a narrow dam crest with earthworks and a pre-cast parapet wall.
Learn more -
$15.00
2003 Papers
2003 – Increasing Storafe Capacity at Dartmouth Regulatory Dam with Fusegates: The Construction Stage
Learn moreBill Hakin, Peter Buchanan, Doug Connors, Darren Loidl
To allow greater flexibility in their generation and hence a better response to the peaks in electricity demand, Southern Hydro decided to increase the Full Supply Level of Dartmouth Regulatory Dam by 3.5m using labyrinth Fusegates.
The Regulating Dam is located on the Mitta Mitta River, approximately 8 km downstream of Dartmouth Dam. It is a 23 m high concrete gravity structure with a 60 m long central spillway section. The dam forms the storage required for regulating releases from the Dartmouth Power Station back to the Mitta Mitta River, so as to satisfy environmental requirements.
Although this is the second Fusegate project in Australia it is unique in that difficult access conditions determined that construction in mild steel would be the most appropriate. Initial civil works involved construction of a flat sill to replace the Ogee spillway crest so that it could support the Fusegates. The installation contractor devised an ingenious method for installing the huge structures over the top of the gate-house which blocks direct access to the spillway. Design was very much undertaken with the installation method in mind to ensure a high quality project with minimum contractual risk.
This paper discusses the construction stage of this very interesting spillway modification.
Learn more -
$15.00
2003 Papers
2003 – DYKES TO ACCESS CANADIAN DIAMONDS THE DIAVIK EXPERIENCE
Learn moreThe Diavik Dyke was constructed in 2001/2 in a major sub-Arctic lake in Canada’s Northwest Territories, to permit an open-pit diamond mining operation. The dyke, 3.9km long, was built in water up to 20 metres deep in a period of 17 months. For ten months of this period the lake was frozen. The project was notable for the extreme climate, discontinuous permafrost in the dyke foundations, very difficult logistics and the exceptional environmental constraints.
Project economics dictated a short construction period to permit the early generation of revenue from the mine. To confidently deliver a secure dyke within the time frame, the world’s most technologically advanced cut-off wall equipment was designed and fabricated in Germany.
This paper provides an overview of the dyke and focuses in more detail on the specialty equipment used for the cut-off wall and foundation treatment.
Learn more -
$15.00
2003 Papers
2003 – COPING WITH PROBABLE MAXIMUM FLOOD – AN ALLIANCE PROJECT DELIVERY FOR WIVENHOE DAM
Learn moreSEQWater is the major supplier of untreated water in bulk to Local Governments and industry in the South East Queensland region of Australia, through ownership of Wivenhoe, Somerset and North Pine Dams. Wivenhoe Dam (Lake Wivenhoe) is located on the Brisbane River in Esk Shire. The storage provides both flood mitigation and water supply storage to Brisbane and Ipswich. The water supply storage capacity at full supply level is 1,160 GL. An additional 1,450 GL of storage above full supply level is used for flood mitigation.
Changes to the estimation of extreme rainfall events has resulted in significant increases in the estimates of the PMF since the original design of Wivenhoe Dam. To upgrade the flood security of Wivenhoe Dam, SEQWater has formed an alliance with Leighton Contractors, Coffey Geosciences, MWH and the NSW Department of Commerce.
This paper details the alliance delivery method, the latest estimates of the PMF based on the GTSMR method and details of the two preferred options being finalised by the Alliance.
Learn more -
$15.00
2003 Papers
2003 – THE IMPACT OF THE REVISION OF PROBABLE MAXIMUM PRECIPITATION ESTIMATES IN THE GTSM REGION OF AUSTRALIA
Learn moreThe Bureau of Meteorology has recently revised the Probable Maximum Precipitation (PMP) estimates for the Generalised Tropical Storm Method (GTSM) region of Australia. The revision process has involved the application of the more technically rigorous Generalised Southeast Australia Method (GSAM) that was previously developed for the southern part of Australia to a much larger data set of severe tropical storms. This has generally lead to an increase in the total GTSM PMP depths with a resultant increase in the Probable Maximum Precipitation Design Flood (PMPDF) and the Probable Maximum Flood (PMF).
In addition, the revision process has produced significant modifications to the temporal and spatial patterns adopted when applying the PMP depths to a dam’s catchment and these changes have also generally lead to increases in the resultant floods.
This paper discusses the rationale behind the increases in PMP depths and changes in the associated temporal and spatial patterns and presents the justification for the adoption of these more scientifically defensible estimates.
The application of the revised PMP estimates to the Keepit Dam catchment in northern NSW is presented and a comparison between the PMPDF and PMF estimates based on the original GTSM and the revised GTSM (GTSMR) made for this specific case study.
Learn more