2003 – Remedial Works Design At Churchman Brook in Western Australia
N. Vitharana, A. Gower, G. Bell and N. Petrovic
Churchman Brook Dam is a 26m high earthfill dam with a puddle clay core and impounds a reservoir of 2.2GL. Various remedial works have been undertaken since completion of construction in 1928. In September 2000, a sinkhole in the right abutment was observed during a routine dam inspection. Following this incident, detailed site investigations were carried out. These investigations revealed that there are soft zones and possibly voids formed in the upper part of the clay core.
A comprehensive dam safety study and a risk workshop undertaken in 2002/2003 showed the dam to be deficient in aspects associated with piping, spillway adequacy and outlet works condition. A rational geotechnical model was developed for the foundation utilising triaxial test data from 1980s and recent investigations. The existing spillway chute will be upgraded with a concrete liner attached to the existing chute incorporating no-fine concrete as a free-draining medium. This paper presents the various aspects of the remedial works currently being designed.
$15.00
Now showing 1-12 of 72 2967:
Related products
-
$15.00
2003 Papers
2003 – INCREASING STORAGE CAPACITY AT DARTMOUTH REGULATORY DAM WITH FUSEGATES : THE CONSTRUCTION STAGE
Learn moreTo allow greater flexibility in their generation and hence a better response to the peaks in electricity demand, Southern Hydro decided to increase the Full Supply Level of Dartmouth Regulatory Dam by 3.5m using labyrinth Fusegates.
The Regulating Dam is located on the Mitta Mitta River, approximately 8 km downstream of Dartmouth Dam. It is a 23 m high concrete gravity structure with a 60 m long central spillway section. The dam forms the storage required for regulating releases from the Dartmouth Power Station back to the Mitta Mitta River, so as to satisfy environmental requirements.
Although this is the second Fusegate project in Australia it is unique in that difficult access conditions determined that construction in mild steel would be the most appropriate. Initial civil works involved construction of a flat sill to replace the Ogee spillway crest so that it could support the Fusegates. The installation contractor devised an ingenious method for installing the huge structures over the top of the gate-house which blocks direct access to the spillway. Design was very much undertaken with the installation method in mind to ensure a high quality project with minimum contractual risk.
This paper discusses the construction stage of this very interesting spillway modification.
Learn more -
$15.00
2003 Papers
2003 – Development of the Method Of Storm Transposition and Maximisation for the West Coast of Tasmania
Learn moreKarin Xuereb, Garry Moore and Brian Taylor
Assessment of dam safety requires estimates of extreme rainfall together with the temporal and spatial distributions of extreme rainfall. In order to satisfy dam safety requirements for dams in the west coast of Tasmania, the Bureau of Meteorology has developed the method of storm transposition and maximisation for application in this region.
Daily, as well as continuously recorded rainfall data for all Bureau of Meteorology and Hydro Tasmania sites in western Tasmania have been analysed and the most outstanding rainfall events over one, two and three-day durations in the region have been identified. Meteorological analysis of these events reveals that the most significant rainfall events in the west coast of Tasmania are caused by the passage of fronts, which are sometimes associated with an intense extratropical cyclone, with a westerly or southwesterly airstream.
A database of isohyetal analyses of the most significant rainfall events in western Tasmania has been established. These can be used either ‘in situ’ or transposed to estimate mean catchment rainfall. Storm dewpoint temperatures for the purpose of moisture maximisation have been determined.
Cumulative and incremental three-hourly temporal distributions for sites having continuous rainfall data or three-hourly meteorological observations have been constructed and design temporal distributions of extreme rainfall have been derived.
Learn more
An objective method for adjusting for differences in the topography between the storm and target locations is proposed. -
$15.00
2003 Papers
2003 – The Impact of the Revision of Probable Maximum Precipitation Estimates in the GTSM Region of Australia
Learn moreJ.H. Green, D.J. Walland, N. Nandakumar
The Bureau of Meteorology has recently revised the Probable Maximum Precipitation (PMP) estimates for the Generalised Tropical Storm Method (GTSM) region of Australia. The revision process has involved the application of the more technically rigorous Generalised Southeast Australia Method (GSAM) that was previously developed for the southern part of Australia to a much larger data set of severe tropical storms. This has generally lead to an increase in the total GTSM PMP depths with a resultant increase in the Probable Maximum Precipitation Design Flood (PMPDF) and the Probable Maximum Flood (PMF).
In addition, the revision process has produced significant modifications to the temporal and spatial patterns adopted when applying the PMP depths to a dam’s catchment and these changes have also generally lead to increases in the resultant floods.
This paper discusses the rationale behind the increases in PMP depths and changes in the associated temporal and spatial patterns and presents the justification for the adoption of these more scientifically defensible estimates.
The application of the revised PMP estimates to the Keepit Dam catchment in northern NSW is presented and a comparison between the PMPDF and PMF estimates based on the original GTSM and the revised GTSM (GTSMR) made for this specific case study.
Learn more -
$15.00
2003 Papers
2003 – Can Cold Water Pollution Be Mitigated Below Hume Dam?
Learn moreB.S. Sherman
Cold water pollution occurs downstream of many Australian dams when water is released from well below the surface layer of a stratified reservoir during spring and summer. Water temperature can be depressed by 8 °C or more and this may impact negatively upon the survival and growth of native Australian fishes.
After many years in the ‘too hard basket’, mitigation of cold water pollution below dams is receiving increasing attention in Australia. Hume Dam is a case in point. Hume Reservoir, one of the largest irrigation reservoirs in Australia, has a high throughput of water (short residence time) and receives unseasonably cold water from Dartmouth Dam on the Mitta Mitta River and the Snowy Mountains Hydro Scheme on the Murray River.
The maximum possible discharge temperature below Hume Dam may be constrained by geomorphic and climatic features beyond human control. Specifically, the relatively short residence time of water may limit the extent to which it can heat up in the reservoir prior to discharge downstream. Here I present a heat budget for Lake Hume and address the question, “How much can we improve the thermal regime below Hume Dam.”
Learn more -
$15.00
2003 Papers
2003 – THE USE OF THE WATT INCLINOMETER FOR OBSERVING THE FACE DEFLECTIONS OF CONCRETE FACED ROCKFILL DAMS
Learn moreHydro Tasmania uses an electronic inclinometer to monitor the face deflections of nine of its CFRDs. The inclinometer is lowered down a steel pipe attached to the upstream face of each dam. The inclinometer was designed and constructed by the University of Tasmania and was first used on Cethana Dam when it was completed in 1972.
The success of its use on Cethana Dam lead to its use for the long term monitoring of eight subsequent CFRDs constructed by Hydro Tasmania.
After 25 years of successful operation some irregular readings of face deflection became apparent. This paper describes the investigation of the irregular readings that had been obtained, the assessment of other methods of observing concrete face deflection, and the refurbishment of the inclinometer using modern electronic components.
Learn more