2003 – Dykes to Access Canadian Diamonds – The Diavik Experience
Richard Olive John Wonnacott, Stefan Schwank
The Diavik Dyke was constructed in 2001/2 in a major sub-Arctic lake in Canada’s Northwest Territories, to permit an open-pit diamond mining operation. The dyke, 3.9km long, was built in water up to 20 metres deep in a period of 17 months. For ten months of this period the lake was frozen. The project was notable for the extreme climate, discontinuous permafrost in the dyke foundations, very difficult logistics and the exceptional environmental constraints.
Project economics dictated a short construction period to permit the early generation of revenue from the mine. To confidently deliver a secure dyke within the time frame, the world’s most technologically advanced cut-off wall equipment was designed and fabricated in Germany.
This paper provides an overview of the dyke and focuses in more detail on the specialty equipment used for the cut-off wall and foundation treatment.
$15.00
Related products
-
$15.00
Papers 2003
2003 – The Use of the Watt Inclinometer for Observing the Face Deflections of Concrete Faced Rockfill Dams
Learn moreArthur Yapa, Tom Bowling and Peter Watt
Hydro Tasmania uses an electronic inclinometer to monitor the face deflections of nine of its CFRDs. The inclinometer is lowered down a steel pipe attached to the upstream face of each dam. The inclinometer was designed and constructed by the University of Tasmania and was first used on Cethana Dam when it was completed in 1972.
The success of its use on Cethana Dam lead to its use for the long term monitoring of eight subsequent CFRDs constructed by Hydro Tasmania.
After 25 years of successful operation some irregular readings of face deflection became apparent. This paper describes the investigation of the irregular readings that had been obtained, the assessment of other methods of observing concrete face deflection, and the refurbishment of the inclinometer using modern electronic components.
Learn more -
$15.00
Papers 2003
2003 – AN ASSET PLANNING SYSTEM FOR THE ENERGY AND WATER BUSINESS
Learn moreAn energy and water company spends $8 million on maintenance each year. This work is defined and scheduled through a maintenance management system, part of an enterprise solution that cost the company over $2 million for licence fees, management consulting and installation.
The company has an ageing asset base and has been spending $18 million annually on capital improvements. The work activities are selected to meet safety requirements, enhance reliability, improve plant and upgrade customer service, and are defined, prioritised and scheduled on Word and Excel, which are standard applications on the desks of the company’s engineers and accountants.
This company is a composite (typical) of many in the energy and water business.
The most significant business decisions that owners usually have to make are capital spending commitments to modernise energy and water assets. To be successful, strategies have to be devised to meet the overall strategic objectives of the business, and processes adopted based on a fully functional and integrated asset planning system.
‘Aptus’ is a web-based planning application built specifically for asset intensive businesses. It enables a consistent analytical framework using engineering knowledge and the dam owner’s financial criteria, to provide new perspectives and support strategic planning and decision making with triple bottom line reporting. Aptus is a proven resource to maximize the value of the asset portfolio and sustain the business into the future.
-
$15.00
Papers 2003
2003 – Contemporary Asset Management of Sydney’s Dams and Related Infrastructure
Learn moreDavid Snape and Brian Simmons
Sydney Catchment Authority (SCA) has been progressively enhancing its asset management capability for dams and other headworks infrastructure since 1999. A key to the development of the integrated asset management system has been the application of asset condition assessment and Failure Modes, Effects and Criticality Analysis (FMECA) across the water supply mechanical and electrical assets. This has provided vital data necessary to:
- Identify all the mechanical and electrical assets
- Update the computerised maintenance management system database (MAXIMO)
- Determine asset criticality against a range of factors
- Allow review and rationalisation of maintenance work plans
- Upgrade the System Management Plans
Asset management features as a key result area within the SCA’s Corporate Business Plan. Integrated asset management is achieved by cascading corporate outcomes, strategies, objectives and responsibilities down through divisional and team work plans to individual staff members. This paper covers a range of issues that have a bearing on the day-to-day integrity of the infrastructure required to deliver bulk raw water to the SCA’s customers.
The management of maintenance at Warragamba Dam is used as an example to demonstrate the effectiveness and practicality of the application of the contemporary asset management system.
Learn more -
$15.00
Papers 2003
2003 – The Impact of the Revision of Probable Maximum Precipitation Estimates in the GTSM Region of Australia
Learn moreJ.H. Green, D.J. Walland, N. Nandakumar
The Bureau of Meteorology has recently revised the Probable Maximum Precipitation (PMP) estimates for the Generalised Tropical Storm Method (GTSM) region of Australia. The revision process has involved the application of the more technically rigorous Generalised Southeast Australia Method (GSAM) that was previously developed for the southern part of Australia to a much larger data set of severe tropical storms. This has generally lead to an increase in the total GTSM PMP depths with a resultant increase in the Probable Maximum Precipitation Design Flood (PMPDF) and the Probable Maximum Flood (PMF).
In addition, the revision process has produced significant modifications to the temporal and spatial patterns adopted when applying the PMP depths to a dam’s catchment and these changes have also generally lead to increases in the resultant floods.
This paper discusses the rationale behind the increases in PMP depths and changes in the associated temporal and spatial patterns and presents the justification for the adoption of these more scientifically defensible estimates.
The application of the revised PMP estimates to the Keepit Dam catchment in northern NSW is presented and a comparison between the PMPDF and PMF estimates based on the original GTSM and the revised GTSM (GTSMR) made for this specific case study.
Learn more -
$15.00
Papers 2003
2003 – REMEDIAL WORKS DESIGN AT CHURCHMAN BROOK DAM IN WESTERN AUSTRALIA
Learn moreChurchman Brook Dam is a 26m high earthfill dam with a puddle clay core and impounds a reservoir of 2.2GL. Various remedial works have been undertaken since completion of construction in 1928. In September 2000, a sinkhole in the right abutment was observed during a routine dam inspection. Following this incident, detailed site investigations were carried out. These investigations revealed that there are soft zones and possibly voids formed in the upper part of the clay core.
A comprehensive dam safety study and a risk workshop undertaken in 2002/2003 showed the dam to be deficient in aspects associated with piping, spillway adequacy and outlet works condition. A rational geotechnical model was developed for the foundation utilising triaxial test data from 1980s and recent investigations. The existing spillway chute will be upgraded with a concrete liner attached to the existing chute incorporating no-fine concrete as a free-draining medium. This paper presents the various aspects of the remedial works currently being designed.
Learn more