2003 – COPING WITH PROBABLE MAXIMUM FLOOD – AN ALLIANCE PROJECT DELIVERY FOR WIVENHOE DAM
SEQWater is the major supplier of untreated water in bulk to Local Governments and industry in the South East Queensland region of Australia, through ownership of Wivenhoe, Somerset and North Pine Dams. Wivenhoe Dam (Lake Wivenhoe) is located on the Brisbane River in Esk Shire. The storage provides both flood mitigation and water supply storage to Brisbane and Ipswich. The water supply storage capacity at full supply level is 1,160 GL. An additional 1,450 GL of storage above full supply level is used for flood mitigation.
Changes to the estimation of extreme rainfall events has resulted in significant increases in the estimates of the PMF since the original design of Wivenhoe Dam. To upgrade the flood security of Wivenhoe Dam, SEQWater has formed an alliance with Leighton Contractors, Coffey Geosciences, MWH and the NSW Department of Commerce.
This paper details the alliance delivery method, the latest estimates of the PMF based on the GTSMR method and details of the two preferred options being finalised by the Alliance.
$15.00
Related products
-
$15.00
Papers 2003
2003 – DATA FOR MAINTENANCE MANAGEMENT
Learn moreThe paper highlights the fundamental importance of correct data selection and storage for the quality of Asset Management demanded for today’s water industry infrastructure.
In developing this theme, the concept of Risk driven maintenance is introduced to focus attention on those issues that not only the identify the appropriate data to be collected and stored, but also, by way of illustrated examples, the direct relevance and application of reliability engineering principles in Risk Analysis.
The author’s principle objective is to demonstrate that the historical data on reliability, condition and performance must be supported with detailed costing information if any worthwhile outcomes are to be forthcoming from analysis.
Learn more -
$15.00
Papers 2003
2003 – Remedial Works Design At Churchman Brook in Western Australia
Learn moreN. Vitharana, A. Gower, G. Bell and N. Petrovic
Churchman Brook Dam is a 26m high earthfill dam with a puddle clay core and impounds a reservoir of 2.2GL. Various remedial works have been undertaken since completion of construction in 1928. In September 2000, a sinkhole in the right abutment was observed during a routine dam inspection. Following this incident, detailed site investigations were carried out. These investigations revealed that there are soft zones and possibly voids formed in the upper part of the clay core.
A comprehensive dam safety study and a risk workshop undertaken in 2002/2003 showed the dam to be deficient in aspects associated with piping, spillway adequacy and outlet works condition. A rational geotechnical model was developed for the foundation utilising triaxial test data from 1980s and recent investigations. The existing spillway chute will be upgraded with a concrete liner attached to the existing chute incorporating no-fine concrete as a free-draining medium. This paper presents the various aspects of the remedial works currently being designed.
Learn more -
$15.00
Papers 2003
2003 – Development of the Method Of Storm Transposition and Maximisation for the West Coast of Tasmania
Learn moreKarin Xuereb, Garry Moore and Brian Taylor
Assessment of dam safety requires estimates of extreme rainfall together with the temporal and spatial distributions of extreme rainfall. In order to satisfy dam safety requirements for dams in the west coast of Tasmania, the Bureau of Meteorology has developed the method of storm transposition and maximisation for application in this region.
Daily, as well as continuously recorded rainfall data for all Bureau of Meteorology and Hydro Tasmania sites in western Tasmania have been analysed and the most outstanding rainfall events over one, two and three-day durations in the region have been identified. Meteorological analysis of these events reveals that the most significant rainfall events in the west coast of Tasmania are caused by the passage of fronts, which are sometimes associated with an intense extratropical cyclone, with a westerly or southwesterly airstream.
A database of isohyetal analyses of the most significant rainfall events in western Tasmania has been established. These can be used either ‘in situ’ or transposed to estimate mean catchment rainfall. Storm dewpoint temperatures for the purpose of moisture maximisation have been determined.
Cumulative and incremental three-hourly temporal distributions for sites having continuous rainfall data or three-hourly meteorological observations have been constructed and design temporal distributions of extreme rainfall have been derived.
Learn more
An objective method for adjusting for differences in the topography between the storm and target locations is proposed. -
$15.00
Papers 2003
2003 – SPILLWAY GATE CONTROL UPGRADES: CLARK DAM, MEADOWBANK AND LIAPOOTAH
Learn moreHydro Tasmania has recently upgraded the control systems for the spillway gates of three of its dams, Clark Dam, Meadowbank Dam and Liapootah Dam. The upgrades followed internal reliability assessments that highlighted high reliance on operator attendance, single points of failure and operational difficulties on each of the three gate systems.
The three gates are of contrasting types. Clark Dam Spillway Gates are submerged orifice type radial gates, operated by wire rope hoists. Meadowbank Crest Gates are flap type gates, held by 10 hydraulic cylinders per gate, a design that has had a difficult operating history. Liapootah is a floating drum gate. The upgrades for each gate therefore required different solutions, albeit within a common basis of design framework. The solutions arrived at are innovative, and meet or exceed worlds best practice.
All three gates are now fully automatic, with PLC control. The use of PLC’s significantly enhances the reliability of the gates. Extensive use is also made of the PLC in monitoring key systems. For example, an impossibly rapid lake level rise detected by one transducer, but not its duplicate, will be alarmed but ignored to avoid unnecessary discharge. All systems incorporate appropriate redundancy. The PLC systems also provide some automatic functional testing functionality and enhance remote alarms and local fault finding.
Mechanical systems were modified to facilitate automation and increase reliability. Stand by power sources used include auto-start diesel genset, DC batteries and a micro hydro generator.
The design and implementation of each of the upgrades was carried out by the Electrical and Mechanical Group of Hydro Tasmania’s Consulting Division, in conjunction with Generation Division’s Project Management Group.
Learn more -
$15.00
Papers 2003
2003 – SPILLWAY GATES A SURVEY OF OPERATIONAL AND RELIABILITY ISSUES RESULTS OF PRELIMINARY ANALYSIS
Learn moreA survey of spillway gate systems and operations has recently been completed by dam organisations in Nth America, Australia and New Zealand. The survey sought to identify typical arrangements for spillway gate systems and common features pertaining to reliability such as system redundancy, actuation methods and back-up systems, gate and hoist types, remote and local operation, gate testing programmes, and human factors.
Sixteen organizations responded, covering sixty two dams and nearly four hundred gates. This Paper reports on the preliminary analysis of the data, providing an overview of the industries’ approach to spillway gate operation and control.
Learn more