2003 – Can Cold Water Pollution Be Mitigated Below Hume Dam?
B.S. Sherman
Cold water pollution occurs downstream of many Australian dams when water is released from well below the surface layer of a stratified reservoir during spring and summer. Water temperature can be depressed by 8 °C or more and this may impact negatively upon the survival and growth of native Australian fishes.
After many years in the ‘too hard basket’, mitigation of cold water pollution below dams is receiving increasing attention in Australia. Hume Dam is a case in point. Hume Reservoir, one of the largest irrigation reservoirs in Australia, has a high throughput of water (short residence time) and receives unseasonably cold water from Dartmouth Dam on the Mitta Mitta River and the Snowy Mountains Hydro Scheme on the Murray River.
The maximum possible discharge temperature below Hume Dam may be constrained by geomorphic and climatic features beyond human control. Specifically, the relatively short residence time of water may limit the extent to which it can heat up in the reservoir prior to discharge downstream. Here I present a heat budget for Lake Hume and address the question, “How much can we improve the thermal regime below Hume Dam.”
$15.00
Related products
-
$15.00
Papers 2003
2003 – SPILLWAY GATE CONTROL UPGRADES: CLARK DAM, MEADOWBANK AND LIAPOOTAH
Learn moreHydro Tasmania has recently upgraded the control systems for the spillway gates of three of its dams, Clark Dam, Meadowbank Dam and Liapootah Dam. The upgrades followed internal reliability assessments that highlighted high reliance on operator attendance, single points of failure and operational difficulties on each of the three gate systems.
The three gates are of contrasting types. Clark Dam Spillway Gates are submerged orifice type radial gates, operated by wire rope hoists. Meadowbank Crest Gates are flap type gates, held by 10 hydraulic cylinders per gate, a design that has had a difficult operating history. Liapootah is a floating drum gate. The upgrades for each gate therefore required different solutions, albeit within a common basis of design framework. The solutions arrived at are innovative, and meet or exceed worlds best practice.
All three gates are now fully automatic, with PLC control. The use of PLC’s significantly enhances the reliability of the gates. Extensive use is also made of the PLC in monitoring key systems. For example, an impossibly rapid lake level rise detected by one transducer, but not its duplicate, will be alarmed but ignored to avoid unnecessary discharge. All systems incorporate appropriate redundancy. The PLC systems also provide some automatic functional testing functionality and enhance remote alarms and local fault finding.
Mechanical systems were modified to facilitate automation and increase reliability. Stand by power sources used include auto-start diesel genset, DC batteries and a micro hydro generator.
The design and implementation of each of the upgrades was carried out by the Electrical and Mechanical Group of Hydro Tasmania’s Consulting Division, in conjunction with Generation Division’s Project Management Group.
Learn more -
$15.00
Papers 2003
2003 – Use of Artificial Aeration to Control Iron and Manganese in Reservoirs.
Learn moreFrank L Burns
By 1976 head loss in the 23 km long 750/900 mm diameter CLMS pipeline from Eppalock Reservoir to Bendigo had increased from 45.7 m to 98.2 m (115%) after only 12 years service. The cause was identified as increased friction from soft voluminous iron and manganese bacterial slime building up on the pipe walls and increasing the friction. Inspection of the drained pipes in the dry gave little indication of the problem since the slime consolidated to an innocuous looking thin smooth coating as it dried.
1960 studies by Tyler and Mitchell at the University of Tasmania for the Hydro-Electric Commission had shown that the micro-organisms producing these slime growths were present in all pipelines. However they required the presence of iron and manganese in the water to flourish and produce flow reduction. Remobilisation from oxygen deficient bottom sediments was shown in the 1940’s by Pearsall and Mortimer in England to be a major source of iron and manganese in reservoir water and this could be controlled if sufficient dissolved oxygen could be provided to convert the reducing conditions at the sediments to oxidising conditions.
An experimental aeration system designed by the author was operated in the 180,000 ML Eppalock Reservoir for 19 days during March 1977. This mixed the reservoir to the depth of the aerators (24 m) increasing the low 10% saturation dissolved oxygen at this depth to a high 94% saturation thereby changing chemical conditions from reducing to oxidising. As a result the iron concentration in the surface water decreased from 2.04 mg/L to 0.54 mg/L but there was little change in the pre-aeration 0.03 mg/L manganese concentration with this short period of aeration. The iron concentration in the water flowing in the pipeline changed from 1.78 mg/l to 0.57 mg/l.
The problem of pipe flow reduction from bacterial slime growth on the pipe walls is discussed in this paper and examples are given of the use of automatic reservoir aeration to overcome the problem including costs and results.
Learn more -
$15.00
Papers 2003
2003 – Investigation of a Deteriorating Seepage Condition in Arapuni Dam Foundation New Zealand
Learn morePeter D Amos, Thomas G Newson, Murray D Gillon
In September 2000, pressures being monitored in a geological fracture beneath Arapuni Dam were found to be rising significantly, indicating that a deteriorating condition was developing in the foundation. Two boreholes drilled in 1995 had intersected high water pressures within the fracture in an area close to the downstream face of the dam, posing a risk of major leakage developing from where the fracture day-lighted downstream of the dam. Lumps of clay, bitumen and lake biota, including snails and small fish, were identified discharging from the boreholes, indicating that a significant leakage path had developed. Detailed investigations, the subject of this paper, were carried out from September 2000 to confirm the extent and nature of the deterioration. A range of groundwater investigation techniques and tools were used, while the reservoir remained full, to identify the source of the leak and confirm the path it took. The investigations culminated in development of a groundwater model that described the seepage behaviour in the dam foundation. Based on the investigation information gathered, the foundation fracture bearing the high water pressure was successfully grouted in December 2001 without lowering the reservoir.
Learn more -
$15.00
Papers 2003
2003 – INVESTIGATION OF A DETERIORATING SEEPAGE CONDITION IN ARAPUNI DAM FOUNDATION, NEW ZEALAND
Learn moreIn September 2000, pressures being monitored in a geological fracture beneath Arapuni Dam were found to be rising significantly, indicating that a deteriorating condition was developing in the foundation. Two boreholes drilled in 1995 had intersected high water pressures within the fracture in an area close to the downstream face of the dam, posing a risk of major leakage developing from where the fracture day-lighted downstream of the dam. Lumps of clay, bitumen and lake biota, including snails and small fish, were identified discharging from the boreholes, indicating that a significant leakage path had developed. Detailed investigations, the subject of this paper, were carried out from September 2000 to confirm the extent and nature of the deterioration. A range of groundwater investigation techniques and tools were used, while the reservoir remained full, to identify the source of the leak and confirm the path it took. The investigations culminated in development of a groundwater model that described the seepage behaviour in the dam foundation. Based on the investigation information gathered, the foundation fracture bearing the high water pressure was successfully grouted in December 2001 without lowering the reservoir.
Learn more -
$15.00
Papers 2003
2003 – Keepit Dam Upgrade – The Community Consultation Way
Learn moreSuzie Gaynor, Jocelyn Potts, David Watson
State Water # as manager of Keepit Dam has established a comprehensive upgrade project.
A portfolio risk assessment by State Water of its major dams placed Keepit Dam as the highest priority for an upgrade.While extreme flood and earthquake dam safety are the main drivesr for this upgrade, the opportunity has been taken to integrate other key dam management considerations into the process including environmental improvements, flood mitigation and sustainable regional development.
The dam, which is located on the Namoi River some 45km upstream of Gunnedah, is, in tandem with Split Rock Dam upstream, a vital irrigation water supply for the Namoi Valley region in northern New South Wales.
In considering the most appropriate way of addressing the critical flood safety issue, it became very apparent that the solutions were many and they significantly impacted on the local community. Other important issues such as water quality and flood mitigation, and overall sustainable development in the valley, particularly system water reliability, could influence dam safety solutions and so also needed to be considered as part of the process. As such it was considered imperative that the local community be actively involved in determining both interim and long-term upgrade solutions.
To achieve the best outcome for the region, State Water since mid 2001, has used the community consultation approach to guide the project.
Currently interim works have been completed and long-term options are being evaluated.An Environmental Impact Statement on the preferred proposal will be undertaken during the later part of 2004 and if approved, all works will be completed by end of 2007.
This paper will highlight our experiences to date including:
- the proposition of an integrated consultative process;
- the background to the project;
- the need for and extent of upgrade;
- an integrated consultation and communication approach including innovative processes and the creation of a high profile Community Reference Panel (CRP) to guide the upgrade project;
- some dos and don’ts from a consultation perspective, for use in other upgrade projects; and where to from now.