2003 – Bellfield Flood Security Upgrade – How We Did it Our Way With Minimal Resources
JL Tottenham
Bellfield dam is a 78,500 ML drought reserve storage for the Wimmera-Mallee Stock and Domestic System. The 800m long by 57m high zoned earth and rockfill dam is located on Fyans Creek upstream of the Grampians tourist town of Halls Gap in north western Victoria. The dam was built in the period 1963-67. Later in 2002-03 as part of a flood security upgrading (FSU) program, had its rock chute spillway deepened by 3.4m and its embankment crest raised by 1.9m to withstand a PMF.
To manage the FSU’s likely construction constraints and risks, Wimmera Mallee Water’s Headworks Group successfully undertook the upgrading by a mix of schedule of rates contracts and direct management.
This paper complements a companion paper by WMW’s design consultants, URS and describes why and how direct management was used, plus unconventional aspects of spillway deepening and the raising of a narrow dam crest with earthworks and a pre-cast parapet wall.
Keywords: Drill and blast, pre-cast parapet wall, narrow embankment crest, direct management, construction.
$15.00
Related products
-
$15.00
Papers 2003
2003 – The Impact of the Revision of Probable Maximum Precipitation Estimates in the GTSM Region of Australia
Learn moreJ.H. Green, D.J. Walland, N. Nandakumar
The Bureau of Meteorology has recently revised the Probable Maximum Precipitation (PMP) estimates for the Generalised Tropical Storm Method (GTSM) region of Australia. The revision process has involved the application of the more technically rigorous Generalised Southeast Australia Method (GSAM) that was previously developed for the southern part of Australia to a much larger data set of severe tropical storms. This has generally lead to an increase in the total GTSM PMP depths with a resultant increase in the Probable Maximum Precipitation Design Flood (PMPDF) and the Probable Maximum Flood (PMF).
In addition, the revision process has produced significant modifications to the temporal and spatial patterns adopted when applying the PMP depths to a dam’s catchment and these changes have also generally lead to increases in the resultant floods.
This paper discusses the rationale behind the increases in PMP depths and changes in the associated temporal and spatial patterns and presents the justification for the adoption of these more scientifically defensible estimates.
The application of the revised PMP estimates to the Keepit Dam catchment in northern NSW is presented and a comparison between the PMPDF and PMF estimates based on the original GTSM and the revised GTSM (GTSMR) made for this specific case study.
Learn more -
$15.00
Papers 2003
2003 – Positive Community Involvement Saves Time and Costs At Yarrawonga Weir
Learn moreSteven Fox and Mark Tansley
Yarrawonga Weir was constructed in the 1930’s and is located on the Victoria / New South Wales border, between the towns of Yarrawonga and Mulwala. Dam safety investigations revealed that the main embankment was founded on a very loose layer of sand that would be vulnerable to liquefaction even under the operating basis earthquake.
This paper details the statutory approvals and community consultation processes that were employed and the benefits that they provided to the $13 million remedial works project.
Learn more
Local communities can assist, be neutral or obstruct a project. By engaging the community in a positive manner it is possible to deliver excellent results without increasing costs. -
$15.00
Papers 2003
2003 – ENERGY DISSIPATION IN CONCRETE INTAKE TOWERS SUBJECT TO EXTREME EARTHQUAKES AND ASSOCIATED REDUCTION IN INERTIA LOADS
Learn moreIn 1998, ANCOLD Guidelines entitled “Guidelines for Design of Dams for Earthquake” was issued. The Guideline mainly deals with the seismic aspects of dams and only a basic reference is made to the seismic assessment of intake towers in Section 8.3. Although the much needed and pioneering step taken to introduce this Guideline is to be appreciated and it has covered the seismic aspects of dams, some confusion does exist amongst dam / structural engineers in assessing the seismic performance of concrete intake towers. This is mainly due to the fact the behaviour of reinforced concrete intakes towers is quite different from that of earth or concrete gravity dams. This confusion could potentially lead to gross overestimate of the inertia loads on concrete intake towers resulting in unnecessary expenditure in investigation and remedial works.
The energy dissipation due to inelastic hysteresis behaviour of concrete members results in a great reduction in the inertia loads compared with those calculated with traditional “elastic” analysis methods. This consequently results in significant reductions in bending moments and shear forces on the tower and its foundation. It is very important to understand the basic behaviour of reinforced concrete, considering the composite action of concrete, longitudinal & hoop reinforcing steel, before embarking in sophisticated dynamic analysis the outputs of which are highly dependent on the input parameters
The authors have developed a methodology in which the hysteresis energy dissipation due to the inelastic behaviour of concrete intake towers is considered. Various criteria were defined for serviceability and ultimate failure modes such as excessive deflection, spalling of concrete, buckling of reinforcing steel. The confinement effect of hoop steel on the core concrete is also considered.
This paper will present the fundamental aspects of seismic behaviour of reinforced concrete structures with practical cases as applied to intake towers. The results showed that the current methods adopted by various Dam Authorities in Australia are cursory and the energy dissipation aspect should be considered, in conjunction with expert advice, before undertaking any remedial works.
Learn more -
$15.00
Papers 2003
2003 – THE IMPACT OF THE REVISION OF PROBABLE MAXIMUM PRECIPITATION ESTIMATES IN THE GTSM REGION OF AUSTRALIA
Learn moreThe Bureau of Meteorology has recently revised the Probable Maximum Precipitation (PMP) estimates for the Generalised Tropical Storm Method (GTSM) region of Australia. The revision process has involved the application of the more technically rigorous Generalised Southeast Australia Method (GSAM) that was previously developed for the southern part of Australia to a much larger data set of severe tropical storms. This has generally lead to an increase in the total GTSM PMP depths with a resultant increase in the Probable Maximum Precipitation Design Flood (PMPDF) and the Probable Maximum Flood (PMF).
In addition, the revision process has produced significant modifications to the temporal and spatial patterns adopted when applying the PMP depths to a dam’s catchment and these changes have also generally lead to increases in the resultant floods.
This paper discusses the rationale behind the increases in PMP depths and changes in the associated temporal and spatial patterns and presents the justification for the adoption of these more scientifically defensible estimates.
The application of the revised PMP estimates to the Keepit Dam catchment in northern NSW is presented and a comparison between the PMPDF and PMF estimates based on the original GTSM and the revised GTSM (GTSMR) made for this specific case study.
Learn more -
$15.00
Papers 2003
2003 – Use of Artificial Aeration to Control Iron and Manganese in Reservoirs.
Learn moreFrank L Burns
By 1976 head loss in the 23 km long 750/900 mm diameter CLMS pipeline from Eppalock Reservoir to Bendigo had increased from 45.7 m to 98.2 m (115%) after only 12 years service. The cause was identified as increased friction from soft voluminous iron and manganese bacterial slime building up on the pipe walls and increasing the friction. Inspection of the drained pipes in the dry gave little indication of the problem since the slime consolidated to an innocuous looking thin smooth coating as it dried.
1960 studies by Tyler and Mitchell at the University of Tasmania for the Hydro-Electric Commission had shown that the micro-organisms producing these slime growths were present in all pipelines. However they required the presence of iron and manganese in the water to flourish and produce flow reduction. Remobilisation from oxygen deficient bottom sediments was shown in the 1940’s by Pearsall and Mortimer in England to be a major source of iron and manganese in reservoir water and this could be controlled if sufficient dissolved oxygen could be provided to convert the reducing conditions at the sediments to oxidising conditions.
An experimental aeration system designed by the author was operated in the 180,000 ML Eppalock Reservoir for 19 days during March 1977. This mixed the reservoir to the depth of the aerators (24 m) increasing the low 10% saturation dissolved oxygen at this depth to a high 94% saturation thereby changing chemical conditions from reducing to oxidising. As a result the iron concentration in the surface water decreased from 2.04 mg/L to 0.54 mg/L but there was little change in the pre-aeration 0.03 mg/L manganese concentration with this short period of aeration. The iron concentration in the water flowing in the pipeline changed from 1.78 mg/l to 0.57 mg/l.
The problem of pipe flow reduction from bacterial slime growth on the pipe walls is discussed in this paper and examples are given of the use of automatic reservoir aeration to overcome the problem including costs and results.
Learn more