2003 – An Innovative Approach to Dam Safety Emergency Planning By An Owner of a Large Portfolio of Dams
Gregg Barker B.E. (Hons.) GradIEAust
Dam safety emergency plans (DSEPs) are typically produced for individual dams. For owners of a large portfolio of dams, this approach creates document control difficulties, requires excessive time and effort and can lead to confusion when a single emergency affects multiple dams having individual DSEPs. Hydro Tasmania has developed a single DSEP which is applicable to its portfolio of 54 referable dams. The DSEP contains generic emergency response procedures, is applicable to a whole range of generic dam safety incidents, uses a simple colour-coded flowchart-action list format, has a two-stage emergency response, retains all necessary dam-specific information and can be easily adapted to any organisational structure. This approach was found to have benefits in document control, flexibility in the management of the emergency response and short lead time in terms of having DSEPs which cover an entire portfolio of dams.
$15.00
Related products
-
$15.00
Papers 2003
2003 – CONTEMPORARY ASSET MANAGEMENT OF SYDNEY’S DAMS AND RELATED INFRASTRUCTURE
Learn moreSydney Catchment Authority (SCA) has been progressively enhancing its asset management capability for dams and other headworks infrastructure since 1999. A key to the development of the integrated asset management system has been the application of asset condition assessment and Failure Modes, Effects and Criticality Analysis (FMECA) across the water supply mechanical and electrical assets. This has provided vital data necessary to:
• Identify all the mechanical and electrical assets
• Update the computerised maintenance management system database (MAXIMO)
• Determine asset criticality against a range of factors
• Allow review and rationalisation of maintenance work plans
• Upgrade the System Management PlansAsset management features as a key result area within the SCA’s Corporate Business Plan. Integrated asset management is achieved by cascading corporate outcomes, strategies, objectives and responsibilities down through divisional and team work plans to individual staff members. This paper covers a range of issues that have a bearing on the day-to-day integrity of the infrastructure required to deliver bulk raw water to the SCA’s customers.
The management of maintenance at Warragamba Dam is used as an example to demonstrate the effectiveness and practicality of the application of the contemporary asset management system.
Learn more -
$15.00
Papers 2003
2003 – AN ASSET PLANNING SYSTEM FOR THE ENERGY AND WATER BUSINESS
Learn moreAn energy and water company spends $8 million on maintenance each year. This work is defined and scheduled through a maintenance management system, part of an enterprise solution that cost the company over $2 million for licence fees, management consulting and installation.
The company has an ageing asset base and has been spending $18 million annually on capital improvements. The work activities are selected to meet safety requirements, enhance reliability, improve plant and upgrade customer service, and are defined, prioritised and scheduled on Word and Excel, which are standard applications on the desks of the company’s engineers and accountants.
This company is a composite (typical) of many in the energy and water business.
The most significant business decisions that owners usually have to make are capital spending commitments to modernise energy and water assets. To be successful, strategies have to be devised to meet the overall strategic objectives of the business, and processes adopted based on a fully functional and integrated asset planning system.
‘Aptus’ is a web-based planning application built specifically for asset intensive businesses. It enables a consistent analytical framework using engineering knowledge and the dam owner’s financial criteria, to provide new perspectives and support strategic planning and decision making with triple bottom line reporting. Aptus is a proven resource to maximize the value of the asset portfolio and sustain the business into the future.
-
$15.00
Papers 2003
2003 – BELLFIELD FLOOD SECURITY UPGRADE How we did it our way with minimal resources
Learn moreBellfield dam is a 78,500 ML drought reserve storage for the Wimmera-Mallee Stock and Domestic System. The 800m long by 57m high zoned earth and rockfill dam is located on Fyans Creek upstream of the Grampians tourist town of Halls Gap in north western Victoria. The dam was built in the period 1963-67. Later in 2002-03 as part of a flood security upgrading (FSU) program, had its rock chute spillway deepened by 3.4m and its embankment crest raised by 1.9m to withstand a PMF.
To manage the FSU’s likely construction constraints and risks, Wimmera Mallee Water’s Headworks Group successfully undertook the upgrading by a mix of schedule of rates contracts and direct management.
This paper complements a companion paper by WMW’s design consultants, URS and describes why and how direct management was used, plus unconventional aspects of spillway deepening and the raising of a narrow dam crest with earthworks and a pre-cast parapet wall.
Learn more -
$15.00
Papers 2003
2003 – The Impact of the Revision of Probable Maximum Precipitation Estimates in the GTSM Region of Australia
Learn moreJ.H. Green, D.J. Walland, N. Nandakumar
The Bureau of Meteorology has recently revised the Probable Maximum Precipitation (PMP) estimates for the Generalised Tropical Storm Method (GTSM) region of Australia. The revision process has involved the application of the more technically rigorous Generalised Southeast Australia Method (GSAM) that was previously developed for the southern part of Australia to a much larger data set of severe tropical storms. This has generally lead to an increase in the total GTSM PMP depths with a resultant increase in the Probable Maximum Precipitation Design Flood (PMPDF) and the Probable Maximum Flood (PMF).
In addition, the revision process has produced significant modifications to the temporal and spatial patterns adopted when applying the PMP depths to a dam’s catchment and these changes have also generally lead to increases in the resultant floods.
This paper discusses the rationale behind the increases in PMP depths and changes in the associated temporal and spatial patterns and presents the justification for the adoption of these more scientifically defensible estimates.
The application of the revised PMP estimates to the Keepit Dam catchment in northern NSW is presented and a comparison between the PMPDF and PMF estimates based on the original GTSM and the revised GTSM (GTSMR) made for this specific case study.
Learn more -
$15.00
Papers 2003
2003 – Investigation of Blowback Incidents at Rangipo Power Station
Learn moreM G Webby
Investigations of damaging blowback incidents at the headrace tunnel intake to Rangipo Power Station in the Central North Island of New Zealand are described. The blowback phenomenon is explained theoretically based on evaluation of the evidence available from the incidents and information obtained from the literature. A physical hydraulic model study is described in which this explanation of the blowback phenomenon was verified. The model was also used to devise a solution for the blowback problem.
Learn more