2002 – Probabilities of Extreme Rainfall – Past, Present, and Future
J.H. Green, P.E. Weinmann, G.A. Kuczera, R. J. Nathan and E.M. Laurenson
Assigning an Annual Exceedance Probability (AEP) to the Probable Maximum Precipitation (PMP), and subsequently to the PMP Design Flood, is an integral part of the risk assessment process for large dams. Laurenson and Kuczera (1998) conducted a review of existing PMP risk estimation practices in Australia and concluded that, in the absence of any better information, the work by Kennedy and Hart (1984) provided the most appropriate estimates to adopt but with the proviso that the method should be viewed as interim pending the outcomes of ongoing research.
This paper gives an overview of a joint research project that is working towards obtaining credible estimates of exceedance probabilities of extreme rainfalls using the concept of storm arrival probability and storm transposition probability. It also outlines the work to be carried out over the next 12 months that will culminate in the combining of the outcomes of the two components and the application to test catchments. Finally, the paper discusses desirable follow-up action to promote the adoption of the research results by practitioners.
$15.00
Now showing 1-12 of 31 2966:
Related products
-
$15.00
2002 Papers
2002 – Experimental Investigation of the Rate of Piping Erosion of Soils in Embankment Dams
Learn moreC.F. Wan, R. Fell, M.A. Foster
This paper presents the findings of experimental investigation of the rate of piping erosion of soils conducted at the University of New South Wales.
Two tests, namely the Slot Erosion Test and the Hole Erosion Test, have been developed to study the erosion characteristics of a soil. The erosion characteristics are described by the Erosion Rate Index, which indicates the rate of erosion due to fluid traction, and the Critical Shear Stress, which represents the minimum shear stress when erosion starts. Results of the two laboratory erosion tests are strongly correlated. Values of the Erosion Rate Index span from 0 to 6, indicating that two soils can differ in their rates of erosion by up to 106 times. Coarse-grained soils, in general, are less erosion-resistant than fine-grained soils. The Erosion Rate Indices of coarse-grained cohesionless soils show good correlation with the fines and clay contents, and the degree of saturation of the soils, whereas the Erosion Rate Indices of fine-grained cohesive soils show moderately good correlation with the degree of saturation. The absence of smectites and vermiculites, and apparently the presence of cementing materials, such as iron oxides, improves the erosion resistance of a fine-grained soil.
The Hole Erosion Test is proposed as a simple index test for quantifying the rate of piping erosion in a soil, and for finding the approximate Critical Shear Stress corresponding to initiation of piping erosion. Knowledge of these erosion characteristics of the core soil of an embankment dam aids assessment of the likelihood of dam failure due to piping erosion in a risk assessment process.
Learn more -
$15.00
2002 Papers
2002 – Seismic Assessment of Wyangala Concrete Gravity Dam and Intake Towers
Learn moreN. Vitharana, G. Bell, J. Jensen and J. Sinha
When the storage was enlarged in 1971, Wyangala Dam provided a storage of 1220Gl. The original concrete gravity dam was completed in 1936 with an initial storage of 37.5Gl. The enlargement comprised the construction of a central core earth and rockfill dam utilising the existing concrete gravity as an upstream “toe” dam. At its deepest section, the toe (concrete gravity) dam is 60m high with a base length of 40m. The rockfill dam is 85m and the full supply level is at 75m. Two cylindrical reinforced concrete intake towers were constructed utilising the crest of the toe dam as their bases.
Screening level analyses commissioned by The NSW Department of Land and Water Conservation have recommended that detailed seismic assessment of the toe dam and intake towers be undertaken. In 2001, GHD Pty Ltd undertook inelastic time-history analysis using site-specific seismic loadings. Toe dam was modelled together with the rockfill dam using a 2-dimensional model. Intake towers were modelled incorporating the composite behaviour of concrete and reinforcing steel with limited concrete strains to prevent the loss of cover concrete and the buckling of longitudinal steel. Time-history analyses supplements by conventional pseudo-dynamic analysis procedures.
This paper described the constitutive modelling, structural analysis criteria, evaluation of hydrodynamic and dynamic earth pressures and the findings.
Learn more -
$15.00
2002 Papers
2002 – Assessing The Likelihood Of Concentrated Leaks Leading To Failure In Concrete Faced Rockfill Dams
Learn moreP. H. Southcott, R. Herweynen and R. Fell
Hydro Tasmania is in the process of undertaking a Portfolio Risk Assessment of its 54 referable dams, of which 14 are concrete faced rockfill dams. One of the potential failure modes identified during the study so far is a concentrated leak developing in the face slab or joints of the slab, leading to failure of the dam. Current methodologies for assessment of piping failures through embankment dams are considered inadequate for this failure mode. This paper discusses an event tree methodology developed from the work of Foster and Fell (1999) and Foster et al (2001) to address this failure mode. The key aspect of this method is identifying the factors that influence the likelihood of initiating a concentrated leak through the perimetric, vertical and crest wall joints and through the face slab concrete. It is concluded that for the vast majority of well designed and constructed concrete faced rockfill dams that a concentrated leak leading to failure is very unlikely.
Learn more -
$15.00
2002 Papers
2002 – Spring Creek Dam – Proposed Remedial Measures for the Defective Concrete Core Wall and Undersized Spillway
Learn morePaul W. Heinrichs & John Bosler
Spring Creek Dam is a 16m high zoned earthfill dam with a central vertical concrete core wall storing 4700 ML for Orange City Council’s water supply. It was a 14.5m high dam constructed in 1931 and in 1947 was raised by 1.0m. In 1966 after a week of heavy rain following a long dry spell, an 80m section of the downstream face slumped but the dam fortuitously survived. In 1969 the dam was re-constructed but no internal drain/filter was installed.
Following the 1994 dam surveillance report, piezometers were installed in the downstream fill. Drilling for these revealed that a substantial portion of the zone downstream of the core wall was saturated. The piezometers recorded piezometric elevations that closely and rapidly followed the reservoir level. Subsequent site investigations identified pockets of very low strength fill immediately downstream of the core wall. It was concluded that the core wall was seriously compromised and the storage level was subsequently, significantly lowered, as an interim dam safety measure.
Dambreak studies indicated the dam is a high hazard and hydrological studies found that the spillway capacity was inadequate.
This paper details the problems involved, their analyses, and the remedial measures proposed at the concept design stage. These include a chimney filter/drain, a stabilising fill combined with embankment crest raising and the construction of a 3-bay fuse plug auxiliary spillway.
Learn more -
$15.00
2002 Papers
2002 – A New Method for Estimating Probable Maximum Precipitation in Tropical Australia
Learn moreDavid J. Walland, Jeanette Meighen, Catherine Beesley, Karin Xuereb
The method for estimating Probable Maximum Precipitation in areas of Australia affected by tropical storms has been revised. The method that it replaces, designed in the 1970s is considered outdated and based on limited data.
The entire Bureau rainfall record has been examined objectively for the largest rainfall events. These events have been analysed and modified to enable storm transposition across a large region. The modifications are based on local topography, moisture and location. Once the storm data is transposed to a single location it can be meaningfully compared and used to construct an upper estimate on the possible rainfall. This estimate can then be used in conjunction with information about a specific catchment in order to estimate Probable Maximum Precipitation at that location.
Learn more