1999 – Sustainable Development in Large Hydro Power Generation
A. Stephen
Among the major energy options, Large Hydro Power is considered to be the front ranking and renewable. But, in most of the developing countries including India, the large multipurpose dam
projects are shrouded in controversies.
This paper, while dealing with positive and negative impacts of large multipurpose dam projects, Jocuses on Social Impact Assessment’ and its mitigatory measures, for the success of the project. The Environment cost as well the Human cost of such projects should be judiciously integrated in the project cycle from its conception to its post implementation stage, for sustainable development of this
power regime.
$15.00
Now showing 1-12 of 33 2963:
Related products
-
$15.00
1999 Papers
1999 – Empirical and Mathematical Methods of Designing Dam Filters
Learn moreBuddhima Indraratna, Mark Locke and Gamini Adikari
The main objectives of the filter are to prevent erosion of the dam core, permit controlled passage of seepage flow through the dam and facilitate dissipation of excess pore pressures in the core. In most designs of dam filters, empirical methods based on particle size ratios have been used. These empirical rules are developed through extensive laboratory tests. Although the empirical rules benefit from directly or indirectly incorporating most factors affecting filtration, they cannot be extrapolated for distinctly different soils and do not describe the time dependent changes that occur within the filter medium.
Mathematical models can be formulated to explain the fundamental physics of particle interaction and migration, within a framework of well defined geohydraulic constraints. Considering the mass flow and momentum conservation principles; time dependent changes in particle size distributions, mass flow rates, retention capacity and base soil erosion rates can be simulated.
This paper reviews various empirical and mathematical models, based on the authors experience. A novel approach to large scale filtration is highlighted based on testing actual soil and filter materials from an Australian dam, in a new 500mm diameter apparatus.
Learn more -
$15.00
1999 Papers
1999 – Construction of the Balambano Dam, Indonesia
Learn moreAndrew Day, Rod Bridges and Corrado Fabbri
A joint venture between Astaldi SpA of Italy and Thiess Contractors Pty Ltd of Australia (ATJO) has just completed a 95m high roller compacted concrete (RCC) dam on the island of Sulawesi in Indonesia. The dam which includes 528,000m’ of RCC was completed in September 1999 and will provide hydro-electric power for a nearby nickel smelting operation.
One of the largest RCC dams built in the region in recent times, the construction presented a number of unique challenges in particular placing techniques to cope with the heavy rainfall in the area as well the logistics to this remote location. Other aspects which are addressed in the paper include production rates, RCC placing systems (Rotec), dam formwork systems, aggregate sources, RCC mixes and waterproofing (membrane).
After early problems with the river diversion, the works were accelerated and completed to a very tight program. To enable dam construction to commence prior to river diversion the wall was advanced as a series of separate monoliths which led to a number of RCC placing innovations.
Learn more -
$15.00
1999 Papers
1999 – Estimating Rare Storms in the Tropics and Sub-Tropics
Learn moreGary Hargraves, Russ McConnell and John Ruffini
The acceptance of the use of generalised methods for estimating extreme rainfall has resulted in a growth of the Probable Maximum Flood (PMF) estimates that spillways of dams are required to pass. In many cases spillways were not designed with spare capacity and are incapable of safely passing the new PMF estimates. Dealing effectively with the potential for dams to cause damage and loss requires a risk management approach. Such an approach requires more reliable tools for estimation of rainfall. This paper examines the issues, the progress made, and outlines further work and options for clarifying risk.
Learn more -
$15.00
1999 Papers
1999 – Warragamba Dam Auxiliary Spillway Design
Learn moreS. Knight, B. Cooper and P. van Breda
Warragamba Dam was completed in 1960 and impounds Sydney’s main water supply storage. Hydrological studies in the 1980’s showed the existing spillway to be significantly undersized by modern standards. Considering the dam’s High Incremental Flood Hazard category, the current risk of dambreak is unacceptably high. This has resulted in a two-stage program to upgrade the dam to full Probable Maximum Flood (PMF) capability.
The interim (first stage) measures were completed in 1990 and involved a 5.1 metre raising of the dam crest and significant post-tensioning of the dam wall. Following many feasibility/option studies and detailed technical and environmental studies, a contract was let by Sydney Water Corporation (SWC) in late 1998 for the construction of an auxiliary spillway as the major (second stage) component of the flood security upgrading. The spillway will be a large capacity (about 18,000m*/s) concrete lined chute 700 metres long around the dam’s right abutment. In the upper curved section will be the largest fuse plug embankments in Australia (up to 14.5 metres high). The lower straight section will terminate with a flip bucket structure.
The NSW Department of Public Works and Services (DPWS) designed the earlier Interim Works, undertook the subsequent engineering option studies for the Major Works and carried out the concept design and technical specification for the new auxiliary spillway and associated dam modification works. This paper summarises the project, describes the main features of the concept design of the spillway and outlines the associated dam modifications.
Learn more -
$15.00
1999 Papers
1999 – Lighting Protection for Dam Instrumentation – A Case Study of the New Victoria Dam
Learn moreAnthony Moulds and Anthony M Watson
The selection of lightning protection equipment will always remain within the cost versus benefit, or risk management area. As more and more monitoring equipment becomes electronic and microprocessor based, we need to have a better understanding of the ways to protect it, and maintain the data flow.
Recent experience has shown that utilising the Australian Standard (NZS/AS 1768-1991) Lightning Protection, in conjunction with a six-point plan, will go a long way to providing total integrated protection for both structures and contents. However, no matter how much protection is applied, damage due to lightning may still occur. For dam surveillance instrumentation the aim ultimately is to protect the transducer ‘in the ground’ or ‘in the dam’, because generally these instruments are inaccessible and non-replaceable without prohibitive drilling and retrofitting costs.
The six-point plan was applied initially to designing lightning protection for a large, well- instrumented RCC dam, completed in 1991. The protection proved to be not as good as was hoped. The paper describes how the lightning protection at the dam was subsequently developed. This experience, which has pointed the way to achieving a good level of protection at a reasonable cost, has been applied to a number of other, instrumented dams.
Learn more