1999 – Dams and the Environment – Issues and Guidelines
T.W. Macoun
ANCOLD Environmental Guidelines have been under preparation for a considerable time. A brief for their preparation followed a resolution by the ANCOLD executive in 1991] that:
“ANCOLD should be seen by the profession and the community as a credible and informed source of information on the risks and benefits associated with dam projects.”
Why the guidelines were initiated, why they have taken the time they have to prepare and what they cover are described in this paper.
To the author’s knowledge, they are the only guidelines of their type, addressing the environmental effects of dams and associated works. It is hoped that they generate substantive debate. This paper initiates the public comments phase.
The paper has two purposes:
° = To introduce the guidelines ° To use the guidelines to introduce this environmental issues session of this conference
$15.00
Related products
-
$15.00
Papers 1999
1999 – Judged Values and Value Judgements in Dam Risk Assessment – A Personal Perspective
Learn moreD.N.D. Hartford
The role of judgement in risk assessments as applied in dam safety management has been the source of considerable debate in recent years. With regard to risk analysis of dams, and while there is general agreement that judgement is an essential element of the process, essentially two schools of thought have emerged. One view holds that, in the assignment of probabilities, reliance can be based on collective engineering judgement that is anchored to a knowledge base. The second view holds that judgement should be based on the knowledge that is revealed by an appropriate amount of analysis. The paper, written from the perspective of the latter view, explores some of the underlying issues in this debate.
The role of judgement in risk evaluation, the process of judging the significance of risk, is considered to be equally important. However, the process of making value judgements and statements of principles is complex and often beyond the sphere of engineering. The third issue addressed in the paper concerns the search for answers to the question, “How good is the assessment?”
Learn more -
$15.00
Papers 1999
1999 – Investigations on Canning Dam Concrete Gravity Structure and it’s Rehabilitation
Learn moreAhmad Shayan, Robert J. Wark and John Waters
The Canning Dam concrete gravity structure located in Western Australia has shown an upward movement of 18.3 mm and lateral upstream movement of 14.2 mm over the past 15 years of monitoring. These movements have been associated with considerable cracking of the upper parts of the dam and the upper gallery. Investigations have shown that the cause of the cracking was a strong alkali-aggregate reaction (AAR) in the concrete, brought about by a deformed granitic rock. Extensive horizontal and vertical cracking in the upper part of the dam wall has necessitated the removal of the section above the floor of the upper gallery level, and construction of a new reinforced concrete section to act as head beam for post-tensioning of the rest of the dam wall.
A set of small diameter cores were taken from the various parts for diagnostic purposes, and a vertical core of 100 mm diameter was taken through the whole thickness of the wall for the determination of the strength properties, alkali content and residual expansion potential. Based on these, a post-tensioning stress of 1.5-2.0 MPa has been calculated for restraining the residual expansion of the concrete. The spillway bridge structure which is part of the dam wall has also shown mild signs of deterioration. The piers and abutment walls and the deck were surveyed for corrosion activity and extent of AAR. This work showed that the spillway bridge structure was sound and only needed maintenance. The performance of a triple blend concrete mix containing a high volume of fly ash (45%) and silica fume (5%) developed for the replacement of the old concrete is also discussed.
Learn more -
$15.00
Papers 1999
1999 – Real Time Flood Management of the Brisbane River and Pine River Dams During the February 1999 Flood
Learn morePeter Allen, Don Cock, Garry Grant and John Ruffini
The paper examines the performance of the Brisbane River and Pine River real time flood management system for the operation of Somerset Dam, Wivenhoe Dam and North Pine Dam during the 1999 flood event.
The February flood event, which was about 80% of the magnitude of the disastrous 1974 flood event upstream of Wivenhoe Dam, was the first major flood event to be managed by the system and it performed very creditably. The overall flood management system comprises:-
A network of 125 ALERT type rainfall and river height stations throughout the catchment; A data management system to facilitate data collection and data validation;- Hydrologic models to provide inflows into the dams and major downstream tributaries; Gate operation models to route the inflows through the reservoirs; and
- Hydraulic models of the main river channels downstream of the dams.
The paper describes the system and gives details of the performance of the system during the February event. It details the performance of the dams during the event and how this was optimised to maximise the safety of the dams and minimise impacts on those downstream.
Learn more -
$15.00
Papers 1999
1999 – The Kelian Waste Storage Dam for the Prevention of Acid Rock Drainage
Learn moreP. J. N. Pells and M. Hunter
The potential for generating acid leachate from waste dumps is a major consideration in many metalliferous and coal mines. This paper describes the construction of the highest embankment dam in Indonesia for the sole purpose of storing potentially acid producing waste under water. The paper discusses the features of embankment dam design peculiar to an open pit mining environment which involves moving more than three times the total volume of earth and rock than in the whole of the Snowy Mountains Scheme.
Learn more -
$15.00
Papers 1999
1999 – Finding The Balance – A Community-led Review of the Operation of Hume and Dartmouth Dams
Learn moreBrian Haisman, Clarke Ballard and Neville Garland
In early 1997 the Murray-Darling Basin Ministerial Council instigated a review of the operations of its primary reservoirs, the Hume and Dartmouth Dams, in response to concerns of floodplain communities below the dams, coupled with changing community values in relation to the in-stream environmental effects of dams. The review, completed in May 1999, achieved a consensus between parties advocating what are on the surface irreconcilable objectives for the management of the water resource. Foremost competing objectives were flood mitigation, consumptive water use, and environmental health of the river system, plus subsidiary objectives related to recreation, hydro-electric generation, salinity management, tourism and the like. The keys to success were firstly, creation of a community-based Reference Panel which took on a steering role coupled with extensive consultation, and secondly a determination to describe situations wherever possible by means of factual information. The paper describes the identification and evaluation of issues, the consensus building process, the intensive hydrology and economic modelling undertaken, and the development of a comprehensive set of flow parameters which could be viewed as surrogates for environmental outcomes. Conclusions and recommendations are drawn for future reviews of similar dams.
Learn more