1998 – Risk Assessment for Hume Dam – Lessons from Estimating the Chance of Failure
Leonard A McDonald and Chi Fai Wan
A risk assessment has been undertaken as part of a comprehensive review of the safety of Hume Dam. Use of risk assessment techniques, to assist in evaluating the safety of existing dams, is a relatively recent trend. Hume Dam was a particularly challenging subject for the application of risk assessment techniques at their present stage of development. The challenge lay in the number and diversity of dam elements to be analysed, in the number and complexity of the potential failure modes and in the fact that there were significant safety issues under normal operating conditions.
This paper outlines some of the key lessons learned from that phase of the risk assessment that was concerned with estimating the chance of dam failure. Some of the issues discussed have not previously been addressed in the literature and some demonstrate a clear need for improved analysis procedures.
$15.00
Now showing 1-12 of 31 2948:
Related products
-
$15.00
1998 Papers
1998 – Monitoring Dam Performance Using Tiltmeters
Learn moreM O’Reilly, S A L Read and P F Foster
Electronic (bubble) tiltmeters provide an up-to-date technique for continuously monitoring the deformations of dam and dam-related structures. Tiltmeters, with a sensitivity of (10Imm per length), are currently used in New Zealand at the high concrete gravity Waitaki Dam, and the Ohau A Powerhouse, as well as a short-term installation in the high concrete gravity Aviemore Dam.
This paper outlines the performance of the tiltmeters over a period of up to 7 years. They have been used to monitor the reactions of structures to loading changes such as headwater level variation, and to monitor ongoing performance, including the definition of annual thermal cycles. The results are compared with other monitoring techniques (e.g. plumblines, conventional surveying) to illustrate the usefulness and applicability of tiltmeters to dam safety programmes, either in conjunction with standard monitoring options, or in particular where such options may not be practicable.
Learn more -
$15.00
1998 Papers
1998 – Improved Estimates of Hydrologic Risks for Dam – Impacts of the New Flood Guidelines
Learn moreP.I. HILL, R.J. NATHAN, P.E. WEINMANN, J.H. GREEN
The assessment of flood risk is important to the safe design, maintenance and operation of dams. Traditionally, a standards-based approach has been adopted, in which the adequacy of a spillway was assessed by its ability to pass the whole, or a specified fraction, of the Probable Maximum Flood (PMF). More recently, however, the ANCOLD Position Paper on Guidelines for Selection of Acceptable Flood Capacity for Dams has moved towards a risk-based approach, in which attention is focused on establishing the exceedance probability of the maximum flood that can be safely passed by the spillway.
The move to a risk-based approach has led to an increasing focus on the derivation of floods with very low probabilities of exceedance. The chapter in Australian Rainfall and Runoff that gives guidance on the estimation of extreme floods has recently been revised and issued as Book VI. The new guidelines reflect the move from a standards, to a risk based approach and also include recent developments in extreme flood estimation. These recent developments result in an improved estimate of floods in the large to extreme range and hence a more reliable estimate of hydrologic risk.
This paper illustrates the impacts of the new flood guidelines by summarising the results for 7 dams in Southeastern Australia. For the examples presented in this paper the impact of the new guidelines is to reduce the estimated hydrologic risk. The new guidelines have an important effect on the estimation of hydrologic risk and therefore the assessment and management of dams in Australia.
Learn more -
$15.00
1998 Papers
1998 – Repair of Two Dams Suffering Leakage – Two Case Studies
Learn moreNikifor Petrovic
One of the most important issues during design and construction of an earthfill dam is how to secure a dam against unwanted events which may occur as a result of water flow (uncontrolled seepage, leakage & piping) through the dam.
Although earthfill dams are the largest by volume compared with other types of dams and they are designed to cope with seepage, their integrity is most sensitive to the effects which may be caused by it. The reason being that the earthfill materials are generally extremely heterogeneous and only one “unwanted” pocket is enough to create problems.
Another critical area is the foundation. In many situations it is not possible to avoid the complex geology which includes faults and joints as part of the foundation. An additional complication may be the presence of dispersive clay in the foundation.
In the area of tailings dams, the problems with seepage are slightly reduced as in most cases, tailings provide a degree of sealing. Tailings dams are very often designed as leaky dams. However, there is a hidden danger in approaching the design this way as at any stage of their lives they can retain water.
This paper presents two case histories of repairs carried out to tailings dams suffering leakage. One case describes leakage through the embankment wall while the other describes seepage through the foundation which contains dispersive soil.
Learn more -
$15.00
1998 Papers
1998 – The Olary Floods February 1997 Implications for South Australia
Learn moreTrevor Daniell, David Kemp and Jenny Dickins
Early February 1997 saw the occurrence of heavy rainfalls over a wide area of South Australia’s north. One of the worst hit areas was near Olary, in eastern South Australia, where over a three day period, rainfall totals up to 320 mm were recorded. Within this period, localised, short duration intense rain occurred. In one four hour period on 7 February, about 200 mm fell.
The rain produced floods that washed away large sections of the main Sydney to Perth railway and inundated long sections of the Barrier Highway. Repair costs were of the order of $6 m for the railway and $1.5m for the road. Damage to rural infrastructure in the region was substantial. Flows within the catchment would have been sufficient to wash away most stream gauging stations.
The airmass over much of South Australia was of tropical origin, contained a high amount of moisture and was unstable. Thunderstorms were the main rain producer, consequently the event was characterised by localised, very intense rain episodes. This contrasts with the March 1989 floods, where it rained at a fairly steady rate over large areas for durations up to 24 hours, as a monsoon low tracked across the state.
Analysis of the depth-area relationship for the Olary storm indicates that the relationship to be used for design purposes should be the humid area relationship of Australian Rainfall and Runoff, not the arid area. This is reinforced when it is considered that the 1997 rainfall was localised, not general rain as in 1989.
Investigation of the event indicates that the Olary Creek catchment experienced overland flow, resulting in much higher peak flows than would occur with more frequently occurring “normal” processes. It is possible that any catchment may change its behaviour with extreme rainfall, and produce flows well in excess of those predicted with currently available runoff routing models, or flood frequency analysis of “normal” events.
Learn more -
$15.00
1998 Papers
1998 – Thermal Stress Modelling, High Sand RCC Mixes and In-Situ Modification of RCC Used for Construction of the Cadiangullong Dam NSW
Learn moreBrian A Forbes and Jon T Williams
The 43 metre high Cadiangullong Dam was constructed during 1997-1998 to supply untreated water for the Newcrest Cadia gold mine near Orange in NSW. The placement of the 110,000 m3 of RCC was performed without expensive thermal control techniques in an area of extreme climate conditions. Thermal finite element studies were undertaken during design to assess the effect of the climate extremes on construction and assist in the design of contraction joints. An RCC mix with sand proportions in excess of 50% of the fully crushed aggregate by weight was used to eliminate segregation. This also had the effect of requiring a low compaction effort to achieve density but exhibited a sheared surface texture if placed over wet. Following full scale trials the conventional concrete facing was superseded during the early stages of construction with an in situ modified RCC facing. The modified RCC consisted of a grout enriched internally vibrated RCC (GE-RCC) to provide a durable, impervious upstream face. This paper discusses the details of these three aspects and provides design, construction and performance data to date.
Learn more