1998 – Monitoring Dam Performance Using Tiltmeters
M O’Reilly, S A L Read and P F Foster
Electronic (bubble) tiltmeters provide an up-to-date technique for continuously monitoring the deformations of dam and dam-related structures. Tiltmeters, with a sensitivity of (10Imm per length), are currently used in New Zealand at the high concrete gravity Waitaki Dam, and the Ohau A Powerhouse, as well as a short-term installation in the high concrete gravity Aviemore Dam.
This paper outlines the performance of the tiltmeters over a period of up to 7 years. They have been used to monitor the reactions of structures to loading changes such as headwater level variation, and to monitor ongoing performance, including the definition of annual thermal cycles. The results are compared with other monitoring techniques (e.g. plumblines, conventional surveying) to illustrate the usefulness and applicability of tiltmeters to dam safety programmes, either in conjunction with standard monitoring options, or in particular where such options may not be practicable.
$15.00
Now showing 1-12 of 31 2948:
Related products
-
$15.00
1998 Papers
1998 – WAC Bennett Dam – The Sinkhole Crisis
Learn moreRaymond A. Stewart
On I7 June 1996 while investigating a small pothole on the crest 183 m high Bennett Dam an unexpected crest collapse occurred resulting in a large sinkhole. Following this incident the safety status of the dam was uncertain. The reservoir was lowered by 2 m over a six week period by spilling up to 5,000 m 3 over the spillway and through the turbines.
An unprecedented dam investigation commenced immediately and was completed December 1996. During drilling a second sinkhole was discovered at another location on the dam.
A sophisticated compaction grouting technique was developed to remediate the sinkholes to the depth of 5 m and the work was successfully completed by 1997. -The reservoir was returned to service in time to collect the freshet in spring 1997. This event was the most dam safety concern in the history of BC Hydro operations.
This paper describes how B.C. Hydro managed the crisis, and the subsequent safety assessment.
Learn more -
$15.00
1998 Papers
1998 – The Olary Floods February 1997 Implications for South Australia
Learn moreTrevor Daniell, David Kemp and Jenny Dickins
Early February 1997 saw the occurrence of heavy rainfalls over a wide area of South Australia’s north. One of the worst hit areas was near Olary, in eastern South Australia, where over a three day period, rainfall totals up to 320 mm were recorded. Within this period, localised, short duration intense rain occurred. In one four hour period on 7 February, about 200 mm fell.
The rain produced floods that washed away large sections of the main Sydney to Perth railway and inundated long sections of the Barrier Highway. Repair costs were of the order of $6 m for the railway and $1.5m for the road. Damage to rural infrastructure in the region was substantial. Flows within the catchment would have been sufficient to wash away most stream gauging stations.
The airmass over much of South Australia was of tropical origin, contained a high amount of moisture and was unstable. Thunderstorms were the main rain producer, consequently the event was characterised by localised, very intense rain episodes. This contrasts with the March 1989 floods, where it rained at a fairly steady rate over large areas for durations up to 24 hours, as a monsoon low tracked across the state.
Analysis of the depth-area relationship for the Olary storm indicates that the relationship to be used for design purposes should be the humid area relationship of Australian Rainfall and Runoff, not the arid area. This is reinforced when it is considered that the 1997 rainfall was localised, not general rain as in 1989.
Investigation of the event indicates that the Olary Creek catchment experienced overland flow, resulting in much higher peak flows than would occur with more frequently occurring “normal” processes. It is possible that any catchment may change its behaviour with extreme rainfall, and produce flows well in excess of those predicted with currently available runoff routing models, or flood frequency analysis of “normal” events.
Learn more -
$15.00
1998 Papers
1998 – From Dam Owners to Water Managers – The Victorian Experience
Learn moreI A Howley, G S Smith and D J A Stewart
Over the past decade the role of dam ownership in Victoria, and indeed Australia, has changed from one of owners, constructors and operators of large civil assets, to managers of structures on behalf of owners of the entitlements to water. This is part of the key business focus to dams management in Victoria.
This position has been heavily influenced by regional water reform policies, such as the Murray Darling Cap, and its effects in Northern Victoria, and COAG Agreements.
Dam owners now run service driven businesses, with a clear separation of roles and responsibilities from the traditional, engineering focused organisations which were established in an environment of resource development. The environment is now one of maintenance, service delivery, structure maintenance and long term business viability for ultimate community benefit.
By using Goulburn-Murray Water as an example, the current model of dams management in Victoria is outlined, together with possible future directions for the rural water industry in Victoria.
Learn more -
$15.00
1998 Papers
1998 – Safety of Meadowbank Dam Against Sliding Parameter Uncertainty
Learn moreRichard I Herweynen
For concrete gravity dams, when the foundation’s value of cohesion is low, it is very difficult to meet the sliding criteria proposed by ANCOLD. Low cohesion is generally associated with serious foundation defects. This was the case for Meadowbank Dam, with a foundation having persistent horizontal seams containing material of a clayey silt size classification. By adopting the ANCOLD strength reduction factors, it was found that a large number of ground anchors would be required to meet the ANCOLD sliding criteria. During original design, extensive laboratory and insitu testing was performed on the seam material. This paper proposes a methodology for arriving at less severe strength reduction factors based upon a statistical analysis of the strength parameters measured in the Meadowbank Dam foundation.
Additionally, a probabilistic approach using a Monte Carlo simulation is used to give further weight to this argument. This paper concludes that the probability of Meadowbank Dam failing due to sliding is very low and within acceptable limits.
Learn more -
$15.00
1998 Papers
1998 – Granit Ground Anchorage Integrity Testing – An Innovative Anchorage Condition Monitoring Procedure
Learn moreD. B. Edwards, B.H. Jackson & R. H. Wright
Ground anchorages are installed to support structures such as dams, slopes and tunnels. Failure of anchorages could be serious.
The condition of these critical supports is currently assessed by monitoring the load in the anchorages by either load cells or lift-off testing (jacking). Both methods are expensive and testing may damage the corrosion protection beneath the anchorage head.
A non-destructive testing method for ground anchorages needed developing and the UK Universities of Aberdeen and Bradford developed a testing system called GRANIT with patent applications on the system filed world-wide.
Full scale measurements were conducted during the construction of Penmaenbach and Pen y Clip Tunnels on the UK’s A55, where rock support was provided by prestressed rock anchorages. In all 9000 records of anchorage response were analysed.
A major finding from the research was that the response of the anchorages to the dynamic impulse motion produced by the blast loading depended on how the anchorage had been constructed and on the nature of the surrounding rock mass. If the prestress load in the anchorage was changed, or the free length increased, a noticeable change was observed in the response ‘signature’ as monitored by an accelerometer located at the anchorage head.
Applying a known impulse load to the anchorage head immediately after construction and measuring the response, provides a datum response signature for the intact anchorage. If the anchorage was to deteriorate in any way, eg loss of prestress, this should be noticeable on subsequent response signatures. This approach is the basis of the GRANIT system.
A short programme of anchor calibration testing for bolts was conducted in Hawkesbury sandstone in Sydney during March 1998 and developments in Australia and UK are proceeding.
Learn more