1998 – Initial Raising of Borumba Dam
RA Geddes
Over the last 30 years, the demand for water storages in Queensland’s Mary’s River has grown significantly. As a result of this growth in demand it was decided to raise Borumba Dam, the major storage on the system, in two stages The first stage was to be approximately 2 metres in I997 and the 25 metre raising be required in about 2010.
Borumba Dam was completed in 1964. It is a 43 metre high concrete faced dam with a 32 metre long on the left abutment. The first proposal for initial raising was to install a two metre high air-inflated rubber dam on top of the existing crest. However, it was determined that this method of raising presented a number of prob and a new solution was sought.
$15.00
Related products
-
$15.00
Papers 1998
1998 – Monitoring Dam Performance Using Tiltmeters
Learn moreM O’Reilly, S A L Read and P F Foster
Electronic (bubble) tiltmeters provide an up-to-date technique for continuously monitoring the deformations of dam and dam-related structures. Tiltmeters, with a sensitivity of (10Imm per length), are currently used in New Zealand at the high concrete gravity Waitaki Dam, and the Ohau A Powerhouse, as well as a short-term installation in the high concrete gravity Aviemore Dam.
This paper outlines the performance of the tiltmeters over a period of up to 7 years. They have been used to monitor the reactions of structures to loading changes such as headwater level variation, and to monitor ongoing performance, including the definition of annual thermal cycles. The results are compared with other monitoring techniques (e.g. plumblines, conventional surveying) to illustrate the usefulness and applicability of tiltmeters to dam safety programmes, either in conjunction with standard monitoring options, or in particular where such options may not be practicable.
Learn more -
$15.00
Papers 1998
1998 – Thermal Stress Modelling, High Sand RCC Mixes and In-Situ Modification of RCC Used for Construction of the Cadiangullong Dam NSW
Learn moreBrian A Forbes and Jon T Williams
The 43 metre high Cadiangullong Dam was constructed during 1997-1998 to supply untreated water for the Newcrest Cadia gold mine near Orange in NSW. The placement of the 110,000 m3 of RCC was performed without expensive thermal control techniques in an area of extreme climate conditions. Thermal finite element studies were undertaken during design to assess the effect of the climate extremes on construction and assist in the design of contraction joints. An RCC mix with sand proportions in excess of 50% of the fully crushed aggregate by weight was used to eliminate segregation. This also had the effect of requiring a low compaction effort to achieve density but exhibited a sheared surface texture if placed over wet. Following full scale trials the conventional concrete facing was superseded during the early stages of construction with an in situ modified RCC facing. The modified RCC consisted of a grout enriched internally vibrated RCC (GE-RCC) to provide a durable, impervious upstream face. This paper discusses the details of these three aspects and provides design, construction and performance data to date.
Learn more -
$15.00
Papers 1998
1998 – Remedial Works for Seepage and AAR Control by Using Watertight Geomembranes
Learn moreM Scuero and Gabriella L Vaschetti
The use of watertight synthetic geomembranes as waterproofing and protection elements for all types of dams started in Europe in the late 1950s and has since been widely applied all over the world as long term repair measure, or as the only element providing watertightness since the design and construction stage.
Learn more -
$15.00
Papers 1998
1998 – Risk Assessment of Dams – Future Directions for Victoria
Learn moreDavid Watson and John Adem
For several years risk management has been promoted by the Victorian Department of Natural Resources and Environment – Water Agencies as the key mechanism for the effective and efficient business management of dams. As part of an extensive water reform program, the Victorian Government announced in October 1997, a financial assistance package for the water industry which included funding for dam improvements covering a majority of large dam owners in the State. One of the conditions for receipt of these improvement funds was the need for each water authority to undertake a Business Risk Assessment of all significant and high hazard dams under its responsibility.
This paper discusses the Business Risk Assessment document based on a framework developed by Water Agencies after consultation with the industry and expands on the following reasons why the document was produced:
- To stress the importance and value of risk assessment in managing dams and the major role it plays in business planning and understanding dam performance. Risk assessment is not an alternative to the traditional engineering or deterministic approach but an enhancement,
- To identify the minimum assessment required and examples of different approaches such as portfolio risk assessments,
- To provide preliminary reference risk criteria to assist water authorities to determine appropriate business performance requirements. This preliminary criteria was developed from considering likely (although subject to change) outcomes of the current revision of Australian National Committee on Large Dams (ANCOLD) 1994 Risk Assessment Guidelines and other guidelines involving risk aspects recently or being prepared,
- To indicate future reporting and actions expected over the five year duration of the package including project evaluations and further risk assessments,
- To assist with inputs into ANCOLD’s continuing development and revision of guidelines, and
- To provide a platform for development over the next 18 months of an appropriate regulatory framework for covering all referable dams in the State. Key considerations will included performance based requirements encompassing risk management concepts, appropriate drivers which promote duty of care and associated legal issues and liabilities.
-
$15.00
Papers 1998
1998 – The Emerging River Murray Water Business – Developing Asset and Risk Management in an Inter-Government Context
Learn moreDavid Dole and Brian Haisman
The Murray-Darling Basin Commission recently created River Murray Water, an internal business unit, as a step towards the micro-economic goals of the COAG Water Reforms.
The assets which regulate the River Murray, have a replacement value around $1.4 billion. They range from the 4000 gigalitre Dartmouth Dam in the headwaters, to the 7.5 kilometres of barrages near the Murray mouth and are presently held in trust for the Contracting Governments of the Basin Initiative by one or other of the three riparian states. River Murray Water is bringing the assets together into a single, integrated business with the aim of securing long-run sustainability, funded through pricing for services provided. Broad institutional and pricing principles are described along with the special challenges of an inter-government environment.
These challenges are being met by adopting clarity and simplicity as driving principles, supported by best practice asset information. The paper describes the upfront development of explicit guiding principles and policies, including risk management and dam safety; coordination of activities; generation of life cycle information; and introduction of contestable service provision for the business.
Learn more