1998 – Characterisation of AAR-Affected Concrete From Dam Structures for Rehabilitation Purposes
A Shayan
Alkali-aggregate reaction (AAR) is a potentially deleterious process in concrete containing reactive aggregates, and can lead to varying degrees of cracking in structures, and differential movement and misalignment of concrete elements and mechanical installations. The rehabilitation of affected structures would require information on the extent of current damage and possibility of on-going damage that could be caused by AAR.
Information on the characterisation of concrete components of an AAR-affected dam and estimation of their future potential for further expansion and cracking are provided and repair options discussed in this paper.
$15.00 $0.00
Now showing 1-12 of 31 2948:
Related products
-
$15.00
1998 Papers
1998 – Safety Assessment of Corin Dam
Learn moreJ. Tabatabaei
A safety review of the Corin dam has identified several deficiencies including an inadequate spillway capacity. A hydraulic model test, included in the review indicated that the construction of a 1.3m wave wall along the top of the dam was required to prevent overtopping during the flood of 10,000 years.
The original post tensioning anchors installed along the spillway crest were also identified as unreliable due to inadequate corrosion protection measures.This paper presents safety assessment and aspects of the construction of the remedial works for Corin Dam. As part of the safety review, the condition of the dam was reviewed against the risks of piping, slope instability, flood and seismic forces. The paper also discusses the long term effects of the acidic leakage on the grout curtain and on the integrity of the core.
The risk associated with the flooding during anchor installation and the discovery of a gap formation between the clay core and the concrete spillway wall are also considered.
Learn more -
$15.00
1998 Papers
1998 – The Olary Floods February 1997 Implications for South Australia
Learn moreTrevor Daniell, David Kemp and Jenny Dickins
Early February 1997 saw the occurrence of heavy rainfalls over a wide area of South Australia’s north. One of the worst hit areas was near Olary, in eastern South Australia, where over a three day period, rainfall totals up to 320 mm were recorded. Within this period, localised, short duration intense rain occurred. In one four hour period on 7 February, about 200 mm fell.
The rain produced floods that washed away large sections of the main Sydney to Perth railway and inundated long sections of the Barrier Highway. Repair costs were of the order of $6 m for the railway and $1.5m for the road. Damage to rural infrastructure in the region was substantial. Flows within the catchment would have been sufficient to wash away most stream gauging stations.
The airmass over much of South Australia was of tropical origin, contained a high amount of moisture and was unstable. Thunderstorms were the main rain producer, consequently the event was characterised by localised, very intense rain episodes. This contrasts with the March 1989 floods, where it rained at a fairly steady rate over large areas for durations up to 24 hours, as a monsoon low tracked across the state.
Analysis of the depth-area relationship for the Olary storm indicates that the relationship to be used for design purposes should be the humid area relationship of Australian Rainfall and Runoff, not the arid area. This is reinforced when it is considered that the 1997 rainfall was localised, not general rain as in 1989.
Investigation of the event indicates that the Olary Creek catchment experienced overland flow, resulting in much higher peak flows than would occur with more frequently occurring “normal” processes. It is possible that any catchment may change its behaviour with extreme rainfall, and produce flows well in excess of those predicted with currently available runoff routing models, or flood frequency analysis of “normal” events.
Learn more -
$15.00
1998 Papers
1998 – Estimating the Probability of Failure of Concrete and Masonry Gravity Dams
Learn moreKurt Douglas, Matt Spannagle and Robin Fell
This paper describes a method for estimating the probability of failure of concrete and masonry gravity dams through the dam or the foundation. The method is based on the research and analysis of historic failures and accidents performed at The University of New South Wales over the last two years. The method accounts for dam type; age; foundation; height/width ratio; dam performance observations; and monitoring and surveillance.
Learn more -
$15.00
1998 Papers
1998 – Risk Based Approach to Wartook Reservoir Rehabilitation
Learn moreR J Westmore and P J Cummins
Wartook Reservoir is owned and operated by the Wimmera Mallee Rural Water Authority in western Victoria. The reservoir was constructed in the period 1887 to 1890 on the Mackenzie River within the Grampians National Park. It has a capacity of 29400 ML, is the sole supply of water to the City of Horsham, and also supplies stock, domestic and irrigation water to the Wimmera and Mallee Regions of Victoria.
The embankment is 1100 m long, 12 m high and is constructed of loose to medium density silty fine sands which are susceptible to liquefaction during a seismic event due to the combination of high pore water pressures and low density. Active seepage from the embankment and foundations render the embankment susceptible to failure by piping.
The outlet works were constructed of sandstone masonry and comprise a tower and cut-and- cover conduit buried within the embankment. Inflow of fine sands from the embankment into the masonry tunnel render the embankment susceptible to failure by piping through the joints in the masonry tunnel.
Design concepts for the rehabilitation of the embankment, outlet and spillways have been developed jointly between Wimmera Mallee Water and SMEC Victoria adopting a risk based approach. The design involves partial rehabilitation of the works, providing acceptable levels of risk to the Authority and community, at an economically justifiable cost.
Learn more -
$15.00
1998 Papers
1998 – Safety of Meadowbank Dam Against Sliding Parameter Uncertainty
Learn moreRichard I Herweynen
For concrete gravity dams, when the foundation’s value of cohesion is low, it is very difficult to meet the sliding criteria proposed by ANCOLD. Low cohesion is generally associated with serious foundation defects. This was the case for Meadowbank Dam, with a foundation having persistent horizontal seams containing material of a clayey silt size classification. By adopting the ANCOLD strength reduction factors, it was found that a large number of ground anchors would be required to meet the ANCOLD sliding criteria. During original design, extensive laboratory and insitu testing was performed on the seam material. This paper proposes a methodology for arriving at less severe strength reduction factors based upon a statistical analysis of the strength parameters measured in the Meadowbank Dam foundation.
Additionally, a probabilistic approach using a Monte Carlo simulation is used to give further weight to this argument. This paper concludes that the probability of Meadowbank Dam failing due to sliding is very low and within acceptable limits.
Learn more