1998 – Characterisation of AAR-Affected Concrete From Dam Structures for Rehabilitation Purposes
A Shayan
Alkali-aggregate reaction (AAR) is a potentially deleterious process in concrete containing reactive aggregates, and can lead to varying degrees of cracking in structures, and differential movement and misalignment of concrete elements and mechanical installations. The rehabilitation of affected structures would require information on the extent of current damage and possibility of on-going damage that could be caused by AAR.
Information on the characterisation of concrete components of an AAR-affected dam and estimation of their future potential for further expansion and cracking are provided and repair options discussed in this paper.
$15.00 $0.00
Now showing 1-12 of 31 2948:
Related products
-
$15.00
1998 Papers
1998 – Geotechnical Assessment and Rehabilitation Challenges for Tailings Dams in China
Learn moreSteven Rosin and Chen Han Shan
Tailings dam rehabilitation is a major challenge for the mining industry in China requiring a multi-disciplinary approach. A team of Chinese and Australian professionals have recently completed a 4-year project to develop guidelines for rehabilitation procedures for tailings dams in China.
This paper focuses on the geotechnical stability issues that were required to be addressed as part of dam rehabilitation assessment. It also discusses Chinese practices in tailings dam design and operation considered for the assessment. Three case studies are presented from sites in various parts of China.
Learn more -
$15.00
1998 Papers
1998 – Granit Ground Anchorage Integrity Testing – An Innovative Anchorage Condition Monitoring Procedure
Learn moreD. B. Edwards, B.H. Jackson & R. H. Wright
Ground anchorages are installed to support structures such as dams, slopes and tunnels. Failure of anchorages could be serious.
The condition of these critical supports is currently assessed by monitoring the load in the anchorages by either load cells or lift-off testing (jacking). Both methods are expensive and testing may damage the corrosion protection beneath the anchorage head.
A non-destructive testing method for ground anchorages needed developing and the UK Universities of Aberdeen and Bradford developed a testing system called GRANIT with patent applications on the system filed world-wide.
Full scale measurements were conducted during the construction of Penmaenbach and Pen y Clip Tunnels on the UK’s A55, where rock support was provided by prestressed rock anchorages. In all 9000 records of anchorage response were analysed.
A major finding from the research was that the response of the anchorages to the dynamic impulse motion produced by the blast loading depended on how the anchorage had been constructed and on the nature of the surrounding rock mass. If the prestress load in the anchorage was changed, or the free length increased, a noticeable change was observed in the response ‘signature’ as monitored by an accelerometer located at the anchorage head.
Applying a known impulse load to the anchorage head immediately after construction and measuring the response, provides a datum response signature for the intact anchorage. If the anchorage was to deteriorate in any way, eg loss of prestress, this should be noticeable on subsequent response signatures. This approach is the basis of the GRANIT system.
A short programme of anchor calibration testing for bolts was conducted in Hawkesbury sandstone in Sydney during March 1998 and developments in Australia and UK are proceeding.
Learn more -
$15.00
1998 Papers
1998 – WAC Bennett Dam – The Sinkhole Crisis
Learn moreRaymond A. Stewart
On I7 June 1996 while investigating a small pothole on the crest 183 m high Bennett Dam an unexpected crest collapse occurred resulting in a large sinkhole. Following this incident the safety status of the dam was uncertain. The reservoir was lowered by 2 m over a six week period by spilling up to 5,000 m 3 over the spillway and through the turbines.
An unprecedented dam investigation commenced immediately and was completed December 1996. During drilling a second sinkhole was discovered at another location on the dam.
A sophisticated compaction grouting technique was developed to remediate the sinkholes to the depth of 5 m and the work was successfully completed by 1997. -The reservoir was returned to service in time to collect the freshet in spring 1997. This event was the most dam safety concern in the history of BC Hydro operations.
This paper describes how B.C. Hydro managed the crisis, and the subsequent safety assessment.
Learn more -
$15.00
1998 Papers
1998 – Initial Raising of Borumba Dam
Learn moreRA Geddes
Over the last 30 years, the demand for water storages in Queensland’s Mary’s River has grown significantly. As a result of this growth in demand it was decided to raise Borumba Dam, the major storage on the system, in two stages The first stage was to be approximately 2 metres in I997 and the 25 metre raising be required in about 2010.Borumba Dam was completed in 1964. It is a 43 metre high concrete faced dam with a 32 metre long on the left abutment. The first proposal for initial raising was to install a two metre high air-inflated rubber dam on top of the existing crest. However, it was determined that this method of raising presented a number of prob and a new solution was sought.
Learn more -
$15.00
1998 Papers
1998 – Risk Assessment for Hume Dam – Lessons from Estimating the Chance of Failure
Learn moreLeonard A McDonald and Chi Fai Wan
A risk assessment has been undertaken as part of a comprehensive review of the safety of Hume Dam. Use of risk assessment techniques, to assist in evaluating the safety of existing dams, is a relatively recent trend. Hume Dam was a particularly challenging subject for the application of risk assessment techniques at their present stage of development. The challenge lay in the number and diversity of dam elements to be analysed, in the number and complexity of the potential failure modes and in the fact that there were significant safety issues under normal operating conditions.
This paper outlines some of the key lessons learned from that phase of the risk assessment that was concerned with estimating the chance of dam failure. Some of the issues discussed have not previously been addressed in the literature and some demonstrate a clear need for improved analysis procedures.
Learn more