Papers
ANCOLD Papers
Here you can search for and access individually, all ANCOLD papers that have been published as part of a conference proceedings and deposited to the National Library.
For authors wishing to reference ANCOLD papers, the following applies to papers published post the cessation of the ANCOLD Bulletin.
The template is as follows:
Author surname, author initials, year of publication, title, publisher, place. Add start and finish pages.
Example:
Herweynen R, Campbell J, and Moeini M (2017) Turkey’s Nest Dam on Top of a Waste Rock Dump – An Innovative Solution for the Kidston Pumped Storage Project. In Proceedings of the 2017 ANCOLD (Australian National Committee on Large Dams) Conference. ANCOLD, Hobart, Australia, pp. 5-16.
Where we have previously lodged proceedings with the National Library that do not have continuous page numbers through from the first paper to the last paper, people wishing to reference the papers will have to leave out the page numbers.
From 2021 onwards the individual papers accessed via the website will show the continuous page numbers.
A CD can be purchased containing ANCOLD Bulletins from 1961 to 2001 on the OTHER PUBLICATIONS page, or these can be downloaded individually HERE
Use the search below using keywords, year or author.
Please add to your shopping cart to purchase and you will receive a link to download.
Members receive papers complimentary. ANCOLD members please log in and add the required papers to you shopping cart and once you click ‘Place Order’ the cost will show as $0 and you will receive the link to the paper.
-
$15.00
2020 Papers
2020 – A novel approach to defect mapping and condition monitoring of large dams using drones and digital engineering
Learn more
Learn more
Zack Wasson
The confluence of several technological innovations including drones, photogrammetry, and thermal imaging has enabled the development of a novel approach to defect mapping and monitoring for large dams. A pilot project trialling the methodology was completed at a rockfill embankment dam with a concrete spillway and is presented as a potential means of improving the accuracy and reliability of condition monitoring. The pilot project included two main objectives: digital inspection and mapping of defects within the concrete spillway; and drone-based photogrammetric survey of the rockfill embankment. Defect mapping of the concrete spillway utilised drone-based photography and Structure from Motion (SfM) photogrammetry to develop a high-fidelity 3D model, from which visual defects could be identified and mapped in a virtual environment. Thermal infrared (IR) imagery of the structure provided an indication of potential shallow subsurface defects in the concrete. Photogrammetric survey of the embankment structure utilised drone-based photography, SfM photogrammetry and a network of precisely surveyed ground control and verification points to develop a georeferenced point cloud, digital elevation model and elevation contours. The results of the project were delivered via a web-based digital twin which included georeferenced results from defect mapping, aerial survey and tools for visualisation, measurement, and reporting.
Learn more
-
$15.00
Learn more
Shane McGrath, Mark Arnold, Josh Rankin, Gavan Hunter
Greenvale Dam is a critical storage for the supply of potable water to Melbourne. The dam had been upgraded through current risk management techniques, and an ALARP assessment completed at that time. However, it was decided that a more comprehensive demonstration of ALARP was warranted to satisfy the dam owner’s duty of care. Since there is no comprehensive guidance in the dams industry for owners and their advisors to reference, the safety case approach used extensively in other hazardous industries was adopted. Considering the approaches used by Victoria’s Worksafe, the Institution of Engineers Australia and the National Offshore Petroleum Safety and Environmental Management Authority (NOPSEMA), the key components of the safety case for Greenvale dam were identified then developed to provide a logical, structured and comprehensive argument for the safety of Greenvale Dam. This paper provides an overview of components of the safety case developed for Greenvale Dam, the use of safety cases for dams and where process improvements could be made.
Learn more
-
$15.00
2020 Papers
2020 – Use of Conditional Mean Spectra with Minimum Magnitude less than 5 in Seismic Hazard Analysis
Learn more
Learn more
Paul Somerville, Andreas Skarlatoudis, Jeff Bayless, Polly Guan
The 2019 ANCOLD seismic guidelines state that “A hazard assessment should be conducted for earthquake magnitudes Mw 5 and above. However, under certain circumstances, smaller magnitude earthquakes may form the lower limit. With masonry dams, slab and buttress dams, older concrete dams, and structural concrete components of dams, Mw 4 earthquake magnitudes should form the lower limit.” However, when using probabilistic Uniform Hazard Spectra (UHS) with Mmin less than 5.0 per the 2019 ANCOLD Guidelines, the hazard will be overestimated unless Conditional Mean Spectra (CMS) are used to represent the ground motions. As described by Somerville et al. (2015), use of the UHS can significantly overestimate the seismic hazard levels presented by individual earthquake scenarios because the UHS envelopes the ground motions from multiple earthquake scenarios in one spectrum. This overestimation is especially true of the ground motions from small magnitude earthquake scenarios. The probabilistic UHS may have large short period ground motions with contributions from a range of scenario earthquakes, but if the UHS is used as the design spectrum, these ground motions will often be represented by earthquake scenarios having inappropriately large magnitudes, long durations, and high long period ground motion levels. As a result, these design ground motions have the potential to overestimate the response of the structure under consideration. By using CMS spectra and time histories, the large probabilistic peak accelerations, predominantly from small earthquakes, are better represented by earthquakes having appropriately small magnitudes, short durations, and lower long period ground motion levels, yielding more realistic estimates of the response of the structure.
Learn more
-
$15.00
2020 Papers
2020 – Some Challenges in Abutting the Dams in the Himalaya
Learn more
Learn more
Neeta Arora, Prashant Agrawal, Yogendra Deva, Ravi Kumar
The tectono-lithologic complexities and the accompanying extreme mass wasting processes make the Himalaya a difficult terrain for river valley development projects envisaging dams and other diversion structures. Besides exceptionally thick riverbed deposits leading to management of deep foundations, abutting the dams often poses challenges in view of difficult ground conditions. The paper looks at three scenarios where the presence of highly decomposed strata, slumped mass and unconsolidated riverbed material led to serious problems in abutting the dams and invariably delayed the project completion. The design approach to special abutment issues is discussed in the light of investigations, explorations, laboratory and field tests, etc. In conclusion, while dependable engineering geological mapping and assessment is considered the backbone, innovative investigations and engineering play crucial role in successful implementation of projects.
Learn more
-
$15.00
2020 Papers
Cloud-Based Monitoring of Geotechnical Structures– Case Study: Hinkley Point Nuclear Power Plant
Learn more
Learn more
Matthias WILD, James STEWART, Chris IRVIN, Sander Van Ameijde
The awareness of safe and sustainable utilisation of all forms of construction such as bridges, tunnels, dams or industrial buildings during its whole lifetime is increasing more and more. The safe operation of our dams is of critical importance to society. As our assets age, the focus on monitoring, control systems and lifespan management is of increasing importance. Communities need to have peace of mind these assets are not going to fail. To prevent failures of structures, a common method is for periodical or situational site visits to check the crucial points of construction. Site visits are cost intensive, subjective and non-continuous. This results in a global research focus on measurement devices and evaluation systems to generate a full structural health monitoring system which guarantees measurement and data evaluation adapted for the specific application over the full lifespan.
For important structures like the Hinkley Point nuclear power plant or Australian Dam structures it’s not just the inspection costs and a sustainably utilisation during service life that are important. The safety during operation of the nuclear power plant is also critical to its operation. To monitor the deep excavation at the power plant DYWIDAG provided geotechnical systems combined with measurement sensors and a monitoring concept for the lifespan of the structure. About 14,000 soil nails and bar anchors are stabilising the excavation. Movements of the retaining wall will lead to a change of stress in the geotechnical tension members. This change is monitored by DYNA-Force Sensors, which are used for load monitoring. This monitoring system has been used successfully in a range of critical structures like stadium roof-beams, staycables, dam-anchors with strands or bars.
A simple installation and read out of sensors is not a major facilitation compared to site visits. The implementation of sensors in a sophisticated monitoring system is the big advantage of structural health monitoring which guarantees a safe and sustainable utilisation of the construction. DYWIDAG is making infrastructure lifespan management smarter and offers a cloud-based online sensor management system (Platform Interactive) which enables processing of large volumes of sensor data and performing complex calculations. It provides real-time alerting, presenting the information in an innovative and interactive way, removing subjective interpretation and providing numerical data online in real time. Platform Interactive with plug and play pre-configured sensors, may also be adapted and applied for a range of SHM projects. It provides continuous reporting and the reassurance structures are performing as they should without the possibility of failure. At DYWIDAG we are making infrastructure lifespan management smarter, safer, stronger
Learn more
-
$15.00
2020 Papers
2020 – Implications of NSW Dams Safety Regulation 2019 on dam safety risk management
Learn more
Learn more
Mark Pearse, John Pisaniello, Sam Banzi, Peter Hill
A completely new dam safety regulation framework was introduced into NSW in November 2019. The new framework addresses all aspects of dam safety management. The implications for dam owners in respect of risk reduction measures (RRMs) that will need to be undertaken have been the matter of debate and are the focus of this paper. The Dams Safety Regulation 2019 requires that dam owners eliminate or reduce the risk posed by their dams but “only so far as is reasonably practicable” (SFAIRP). This is a change from the previous Dams Safety Committee requirement that risks should be reduced as low as reasonably practicable (ALARP). The previous guidance around the extent and timing of risk reduction has been removed and dam owners are now required to determine what is ‘reasonably practicable’. These changes were anticipated to save hundreds of millions of dollars from the reduced cost of risk reduction measures across the state of NSW. These savings appear unlikely to materialise given that dam owners are likely to be highly cognisant of the need to meet the common law expectation that RRMs should be implemented unless the costs associated with the RRMs are grossly disproportionate to the benefits gained. The key changes in the new regulatory framework are identified along with the legal and financial implications in regard to RRMs followed by next steps that should be considered by dam owners in NSW. Many of the implications are applicable to other dam owners who operate under common law (including all states of Australia and New Zealand).
Learn more
-
$15.00
2020 Papers
2020 – Increasing risks: The unintended effect of our TSF Standards and Guidelines
Learn more
Learn more
Ryan Singh, Jiri Herza, James Thorp
Recent and continual failures of tailings storage facilities (TSFs), often resulting in catastrophic consequences, has led to calls for action from the industry, stakeholders and the public at large. Several standards and guidelines are being prepared at the time of writing, most notably a Global Industry Standard on Tailings Management (GISTM), with the overall objective to reduce the rate of TSF failures globally. While better guidelines are certainly necessary, there are requirements that must be carefully followed in developing a document that has the ambition to become a standard. If such requirements are not fulfilled, the document can become ineffective or potentially have the opposite result to that which was intended. This paper discusses whether or not the GISTM meets the requirements of the standards and analyses the potentially negative impacts of its implementation on the industry and wider society. Based on this analysis, this paper provides several recommendations for improvements that should be considered by the GISTM panel and other working groups preparing standards and guidelines.
Learn more
-
$15.00
2020 Papers
2020 – Monte Carlo Geospatial Approach to Liner Design Principles in TSFs
Learn more
Learn more
Gideon Steyl, Ralph Holding, Lis Boczek
A Monte Carlo method for assessing liner systems is applied with outcomes demonstrating the range of discharge that could occur over the liner interface. The Monte Carlo approach allows for variation of fill material over the liner system and includes the assessment of a second compacted zone either above or below the liner zone. In this paper clay liners were evaluated due to regulatory guidelines and it could be demonstrated that similar performance to a 1 m clay liner could be attained using compacted material to reduce discharge over the liner interface. The approach applied in this paper allows for at least a worst-case quantification of seepage risk which could be included in liner selection criteria or presenting liner options to regulators.
Learn more
-
$15.00
2020 Papers
2020 – Dynamic Analyses for Static Liquefaction Factor of Safety and Triggering Threshold Values in Tailings Storage Facilities Constructed by Upstream Method
Learn more
Learn more
Qian Gu, Joshua Chan
Tailings Storage Facilities (TSF) constructed using upstream methods may have static liquefaction risks due to the strain softening behaviour of contractive tailings. Conventional Limit Equilibrium Analyses (LEA) using either peak strength or residual strength fail to address the stress-strain compatibilities between materials at different stages of softening or hardening, resulting in over or underestimating embankment stabilities. Static numerical analyses (Finite Element or Difference) are unable to identify the threshold stability due to their inability to converge close to or beyond equilibrium conditions.
In this study the failure triggering process is modelled with dynamic Finite Element Analyses (FEA) with the stress-softening behaviour of contractive tailings simulated by Norsand Model. The embankment failures are identified by either non-zero residual velocities along downstream face, or a drop in average shear stress along potential failure surfaces under increasing disturbing surface pressure. Threshold disturbing surface pressure estimated using these two methods are in close agreements. Factor of Safety (FoS) values estimated from peak mobilised shear strength are found to be between those estimated using the peak and residual shear strength in LEA. q-p’ stress paths in tailings clearly show the stress ratio increasing towards and beyond instability ratio during undrained triggering process. The developments of zones of shear softening and p’ reduction with increasing undrained disturbances help visualise the failure triggering process.
Learn more
-
$15.00
2020 Papers
2020 – Demonstrating risk benefits of improved monitoring and surveillance
Learn more
Learn more
Hench Wang, Peter Hill, Sam Banzi, Muhammad Hameed
Dam owners can often struggle to demonstrate the dam safety risk benefits that can be achieved through non-structural risk reduction measures, such as adoption of smart technological solutions that improve the timeliness and quality of decision making. WaterNSW collaborated with HARC to develop a novel way of demonstrating benefits from improved data management. This paper discusses the use of HEC-LifeSim to demonstrate the reduction in life safety risk from improved monitoring through DamGuard for a case study dam in Sydney. DamGuard is a real-time dam safety monitoring system implemented by WaterNSW. This case study was the first time in Australia where a simulation model such as HEC-LifeSim was applied to quantify the life safety risk benefits pre and post the implementation of DamGuard. The implementation of DamGuard to the sample dam was estimated to reduce the life safety risk by 15%.
Learn more
-
$15.00
2020 Papers
2020 – Challenges in applying new guidelines to existing tailings dams projects
Learn more
Learn more
Michael Ashley, John Phillips
New guidance and publications relating to tailings dams have been released recently by many jurisdictions across the world as an initial response to recent, well-documented, catastrophic tailings dam failures. The application of new guidelines retrospectively to existing tailings projects can introduce complex challenges, especially for sites with a long and often not well documented history. Challenges can be difficult to overcome while balancing time, cost and risk objectives.
This paper explores the impacts of changes between the 2012 and 2019 revisions of the ANCOLD Guidelines on Tailings Dams and potential implications for existing facilities.
The most significant update between the 2012 and 2019 revisions of the guidelines relating to design practices is the additional detail and guidance on seismic stability analyses and static liquefaction. Guidance on the application of new guidelines for tailings dam designers, owners and regulators is required to provide a consistent approach to manage the risk.
Learn more
-
$15.00
2020 Papers
2020 – Dam Safety Due Diligence demands SFAIRP not ALARP
Learn more
Learn more
Richard M Robinson, Siraj Perera, Gaye Francis
Due diligence has become endemic in Australian legislation and in case law, to the point that it has become, in the philosopher Immanuel Kant’s terms, a categorical imperative. That is, our lawmakers seem to have decided that due diligence is universal in its application and creates a moral justification for action. This also means the converse, that failure to act demands sanction against the failed decision maker.
This applies to dam safety management which represents the archetypical high consequence – low likelihood event. It is now essential to have positively demonstrated safety due diligence in a way that can withstand post-event judicial scrutiny. Presently the only way this can be done is by using the notion of criticality and precaution, not hazard and risk. The test is not that of risk acceptability (as low as reasonably practicable or ALARP), rather it is that no further reasonably practicable precautions (so far as is reasonably practicable or SFAIRP) are available, and that what results is not prohibitively dangerous.
This paper will document the difference between the two approaches and how to positively demonstrate safety due diligence. It also discusses the definition of ALARP as stated in ANCOLD’s Guidelines on Risk Assessment 2003 and the relevance of the safety case principle for dam safety management.
Learn more